Skip to main content
U.S. flag

An official website of the United States government

Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season

Formally Refereed

Abstract

Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar polyamines and free amino acids (putative stress-protection compounds), chlorophyll (a key photosystem component), and sapwood area (a proxy for foliar biomass), for trees in Ca-addition (CaSiO3 added) and Ca-depleted (reference) watersheds at the Hubbard Brook Experimental Forest (NH, USA). Ca-addition increased concentrations of the amino acids alanine and γ-aminobutyric acid (GABA) and the polyamines putrescine (Put) and spermidine (Spd) in November, and Put in February relative to foliage from the reference watershed. Consistent with increased stress protection, foliage from the Ca-addition watershed had higher total chlorophyll and chlorophyll α concentrations in February than foliage from the reference watershed. In contrast, foliage from the reference watershed had significantly lower glutamic acid (Glu) and higher alanine (Ala) concentrations in February than foliage from the Ca-addition watershed. Imbalances in Ala:Glu have been attributed to cold sensitivity or damage in other species. In addition to concentration-based differences in foliar compounds, trees from the Ca-addition watershed had higher estimated levels of foliar biomass than trees from the reference watershed. Our findings suggest that Ca-addition increased the stress tolerance and productive capacity of red spruce foliage during the cold season, and resulted in greater crown mass compared to trees growing on untreated soils.

Keywords

acidic deposition, calcium depletion, polyamines, free amino acids, chlorophyll content, sapwood area

Citation

Schaberg, Paul G.; Minocha, Rakesh; Long, Stephanie; Halman, Joshua M.; Hawley, Gary J.; Eagar, Christopher. 2011. Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season. Trees. 25: 1053-1061.
Citations
https://www.fs.usda.gov/research/treesearch/39583