Publication Details

A combined approach for early in-field detection of beech leaf disease using near-infrared spectroscopy and machine learning

Publication Toolbox

  • Download PDF (3.0 MB)
  • This publication is available only online.
Fearer, Carrie J.; Conrad, Anna O.; Marra, Robert E.; Georskey, Caroline ; Villari, Caterina ; Slot, Jason ; Bonello, Pierluigi

Year Published

2022

Publication

Frontiers in Forests and Global Change

Abstract

The ability to detect diseased trees before symptoms emerge is key in forest health management because it allows for more timely and targeted intervention. The objective of this study was to develop an in-field approach for early and rapid detection of beech leaf disease (BLD), an emerging disease of American beech trees, based on supervised classification models of leaf near-infrared (NIR) spectral profiles. To validate the effectiveness of the method we also utilized a qPCR-based protocol for the quantification of the newly identified foliar nematode identified as the putative causal agent of BLD, Litylenchus crenatae ssp. mccannii (LCM). NIR spectra were collected in May, July, and September of 2021 and analyzed using support vector machine and random forest algorithms. For the May and July datasets, the models accurately predicted pre-symptomatic leaves (highest testing accuracy = 100%), but also accurately discriminated the spectra based on geographic location (highest testing accuracy = 90%). Therefore, we could not conclude that spectral differences were due to pathogen presence alone. However, the September dataset removed location as a factor and the models accurately discriminated pre-symptomatic from naïve samples (highest testing accuracy = 95.9%). Five spectral bands (2,220, 2,400, 2,346, 1,750, and 1,424 nm), selected using variable selection models, were shared across all models, indicating consistency with respect to phytochemical induction by LCM infection of pre-symptomatic leaves. Our results demonstrate that this technique holds high promise as an in-field diagnostic tool for BLD.

Keywords

spectroscopy; beech leaf disease; machine learning; early detection; Fagus grandifolia; predictive modeling

Citation

Fearer, Carrie J.; Conrad, Anna O.; Marra, Robert E.; Georskey, Caroline; Villari, Caterina; Slot, Jason; Bonello, Pierluigi. 2022. A combined approach for early in-field detection of beech leaf disease using near-infrared spectroscopy and machine learning. Frontiers in Forests and Global Change. 5: Article 934545 16 p. https://doi.org/10.3389/ffgc.2022.934545.

Last updated on: August 10, 2022