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Abstract.—Tree mortality is one of the most complex

phenomena of forest growth and yield. Many types of

factors affect tree mortality, which is considered difficult

to predict. This study presents a new systematic approach

to simulate tree mortality based on the integration of

statistical models and geographical information sys-

tems. This method begins with variable preselection

using multiple linear regression models and logistic

models and employs spatial autocorrelation detection

and random sampling. Three random sampling methods

are applied and compared to reduce the effects of spa-

tial autocorrelation, and systematic random sampling

significantly reduces the spatial autocorrelation among

the observations and is used for the final variable

selection and model fitting. Using Forest Inventory

and Analysis (FIA) data for the State of Georgia, this

systematic approach provides significant implications

for future tree mortality studies and other spatial

analysis in forestry or geography.

Forest tree mortality is an important factor in nutrient cycling

as well as global climate warming because mortality and net

primary production are two critical processes of forest carbon

budgets (Brown and Schroeder 1999). In addition, a large portion

of the threatened forest species lives in dead wood (Rouvinen et

al. 2002). At the same time, forest tree mortality may reduce

the productivity of forests and increase the risk of wildfires.

Tree mortality, however, is considered difficult to predict.

The literature contains many reports from different studies

on tree mortality. For example, Greene et al. (1992) and Pedersen

and McCune (2002) conducted research on mortality rates, using
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wind as the primary disturbance contributing to tree mortality,

and found that the total biomass declined from 1979 to 1989

because the new biomass production was less than mortality.

Pedersen and McCune (2002) modeled tree mortality rates as a

function of diameter at breast height (d.b.h.), species, decades,

and site index. In their study, they reconstructed tree mortality

rates for the years 1968 to 1977 and 1978 and 1987 in oak-hickory

forest. Rouvinen et al. (2002) researched tree mortality, its

causes, and spatial pattern in four transects with a total area of

48.8 ha of Vienansalo wilderness in eastern Fennoscandia,

Finland. They divided mortality into three categories: current,

recent, and predicted mortality. They concluded that tree mortality

was continuous at the landscape scale, although some spatial

aggregations occurred. Osawa et al. (1986) conducted systematic

research on forest tree mortality using Baxter State Park as the

study area and compared tree mortality among various onsite

topographical conditions. Basal area, d.b.h., or stand age is

supposed to significantly contribute to tree mortality (Fridman

and Stahl 2001, Yang et al. 2003, Monserud and Sterba 1999,

Avila and Burkhart 1992, and Zhang et al. 1997). 

In the 1960s and 1970s, linear and polynomial models

were commonly used (e.g., Lee 1971). Osawa et al. (1986)

concluded, however, that multiple regression analysis was

unsuccessful in relating tree mortality to forest structural

characteristics and topographical properties. Nonlinear models,

especially the logistic functions, have been the most widely used

functions for mortality modeling from Walker and Duncan (1967)

and Neter and Maynes (1970). Guan and Gertner (1991) pointed

out that the best function to model individual tree mortality may

be the logistic function based on statistical tests.

We conducted a systematic study on tree mortality in the

State of Georgia. In our research, we performed three steps:

variable preselection based on original data, sampling and spatial

autocorrelation comparison, and model fitting and selection.
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Study Area and Data

Our study area was the entire State of Georgia, the largest State

east of the Mississippi River, with an area of 152,576 square

kilometers. We based our research on available, online, forest

inventory data provided by the Forest Inventory and Analysis

(FIA) program. 

We analyzed plot data for the periodic 2001 inventories

and considered every single FIA plot as the basic unit for our

study. We processed the original data in this manner: 

1. All forest type data, i.e. the data of all trees, was segregated

into two broad forest categories, hardwoods and softwoods.

All tree sizes inventoried by the FIA were included to

account for any potential mortality of small trees. 

2. The number of mortality trees per acre per year (TPAMORT)

was used as the variable to calculate tree mortality on every

plot and also as the response variable. 

3. Latitude (LAT), longitude (LON), elevation (ELEV), con-

dition proportion (CONDPROP), stand age (STDAGE),

stand size code (STDSZCD), site productivity code (SITE-

CLCD), slope (SLOP), aspect (ASPECT), physiographical

code (PHYCLCD), growing-stock stocking code

(GSSTKCD), stand treatment 1 code (TRTCD1), basal

area of all live trees (BALIVE), current diameter (DIA),

and trees per acre (TPACURR) are used as independent

variables. STDSZCD, SITECLCD, PHYCLCD,

GSSTKCD, and TRTCD1 are five categorical variables;

the remaining 10 variables are numerical. 

4. These data are aggregated into three groups: all trees,

hardwood, and softwood. 

5. In the sampling process, the State of Georgia is divided

into five regions (fig 1): the northwest corner is a ridge

and valley region; the northeast corner is a mountain

region; north central Georgia is the piedmont region; south

central Georgia is an upper coastal plain region; and the

southeast corner is a lower coastal plain region. In each

subregion, few differences exist in natural environment,

landscape, or forest species.

Methodology

We used four types of methods in our study. Multiple linear

regression and logistic regression were applied for variable

selection and model fitting. Sampling methods were used to

make samples from the original data. For geographic information

systems (GIS), Environmental Systems Research Institute, Inc.

(ESRI) ArcInfoSM and Arcview® products are used to process

location data and related attributed data and calculate the coef-

ficients of spatial autocorrelation.

Multiple Linear Regression and Logistic Regression

Equation 1 is a multiple linear regression function; equation 2

is a logistic regression function. The two functions, used for all

trees, hardwood and softwood, have categorical variables. We

applied a stepwise method to select variables in fitting logistic

models:

(1)

(2)

Where: Y is the numbers of tree mortality,

p is the probability of tree mortality, and

x1, x2, x3, 
…and x15 are the variables of LAT, LON, ELEV,

CONDPROP, STDAGE, STDSZCD, SITECLCD, SLOP,

ASPECT, PHYCLCD, GSSTKCD, TRTCD1, BALIVE, DIA,

and TPACURR.

Sampling Methods

We used simple random sampling (SRS), the simplest form of

random sampling. It is easy to perform and explain to others, a

fair way to select a sample, and reasonable to generalize the

Figure 1.—Georgia’s five study subregions.



results from the sample back to the population. Second, we

employed systematic random sampling (SYS), also fairly easy

to perform. Third, we used a stratified random sampling (STS)

method. For STS, the population of all trees, hardwood and

softwood, were divided into five groups based to the five sub-

regions (fig. 1) noted above. 

Geographic Information Systems

We used the following two types of coefficients of spatial auto-

correlation this study. Equation 3 is Geary’s coefficient C, and

equation 4 is Moran’s I coefficient. 

(3)

(4)

where Cij is the similarity of attributes, 

Wij is the similarity of distance, and

s2 and      is the variance of attributes.

Results

Variable Selection Based on Original Data

First, a multiple linear regression function is applied for all

trees to select significant variables based on original data. In

equation 1, the tree mortality numbers is the response, and the

other 15 variables are independent variables. The residual plot

indicates the absence of constant variance among the residuals.

Then, a straightforward log transformation for the data of all

trees, hardwood and softwood, is used. Next, the multiple linear

regression models are fitted again for these three groups of data.

The residual plots are good, and the linear models are acceptable.

At the level of alpha = 0.05, some differing variables exist, but

some are also the same (table 1). For all trees, hardwood and
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All trees Hardwood Softwood

Variable F-value P-value Variable F-value P-value Variable F-value P-value

DIA 15.57 0.0001 DIA 30.74 0.0001 DIA 10.21 0.0015

TPAGROW 60.34 <.0001 TPAGROW 20.44 0.0001 TPAGROW 42.15 0.0001

ELEV 3.85 0.05 ELEV 9.97 0.0016 TRTCD 2.91 0.0338

PHYSCLCD 1.87 0.0397

Table 1.—Multiple linear regression analysis based on original data.

softwood, TPAGROW and DIA are significant variables, which

means that tree density may be a critical factor for tree mortality,

and tree size may be also a better variable for mortality prediction.

For all trees and hardwood, ELEV is the other common variable

that affects tree mortality. In addition, at the 0.05 level, the

physiographic class variable is significant for hardwood mortality,

and the treatment class variable is significant for softwood mortality.

The logistic models provided some of the same significant

variables and some different ones, too, compared with multiple

linear models. For all trees, only one variable, DIA, was still

significant; the other four variables—BALIVE, CONPROP,

SITECLC, and STDSZCD—are added, which means that basal

area, condition proportion, site productivity class, and stand size

class were important for mortality of all trees. For hardwood,

the four variables DIA, TPAGROW, PHYSCLCD, and ELEV

were still significant compared with the above multiple linear

regression analysis, and two other variables, BALIVE and

STDAGE, were added. Basal area and stand age were also

important for hardwood mortality based on logistic regression

analysis. For softwood, only one variable, TPAGROW, is still

significant compared with the multiple linear regression, and

three other variables that are important for softwood mortality

were added: stand age, site productivity class, and stand size class.

Sampling and Spatial Autocorrelation Calculation

Spatial autocorrelation is typically over looked in most tree

mortality research. In our study, we calculated spatial autocor-

relation for different kinds of sampling methods (table 2), and

selected a better sampling method, SYS, for model fitting again.

Variable Reselection and Model Fitting

For multiple regression functions, variables are reselected after

log transformation of tree mortality data. Table 3 lists the sig-

nificant variables. 
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Compared with outcomes of logistic regression without

random sampling, the numbers of significant variables decreased,

and some significant variables were no longer significant (table

4). For mortality of all trees, BALIVE, SITECLCD, and STD-

CLCD were still significant after SYS, and TPAGROW became

a significant variable. For hardwood, STDAGE, DIA, and TPA-

GROW were still significant, but BALIVE, PHYSCLCD, and

ELEV were no longer significant. For softwood, TPAGROW

was no longer significant, but STDSZCD, STDAGE, and SITE-

CLCD were still significant after SYS.

Conclusions 

Based on our analyses, the logistic mortality functions for all

trees, hardwood and softwood, are equations 5, 6, and 7.      is

the probability of tree mortality; ba is basal area; g is TPAGROW;

s is the stand size class variable with from one to four classes;

si is the site productivity class variable, which has from one to

five classes; a is stand age; and d is DIA. 

Tree mortality has several common characteristics. For all

trees and softwood, STDSZCD classes 1 and 2 (large diameter

and medium diameter classes) have the highest mortality proba-

bility; STDSZCD 4 (chaparral class) has a medium mortality

probability; class 3 (small diameter class) has the lowest mortality

probability. SITECLCD classes 2 (site productivity between 165

and about 224 cubic feet/acre/year) and 3 (site productivity

between 124 and approximately 165 cubic feet/acre/year) have

higher mortality probability than classes 4 (site productivity

between 85 around 119 cubic feet/acre/year) and 5 (site produc-

tivity between 50 and about 84 cubic feet/acre/year). Class 1

(site productivity more than 225 cubic feet/acre/year) has a

medium mortality probability. For all trees and hardwood, the

probability of tree mortality slightly decreases as TPAGROW

increases.

All trees Hardwood Softwood

Variable Wald-Chi P Variable Wald-Chi P Variable Wald-Chi P

DIA 5.65 .0179 DIA 16.43 <.0001 TPAGROW 11.46 .0009

TPAGROW 22.12 <.0001 TPAGROW 3.91 .0488

ELEV 5.57 .0189

Table 3.—Multiple regression analysis after SRS.

All trees Hardwood Softwood

Variable Wald-Chi P Variable Wald-Chi P Variable Wald-Chi P

BALIVE 9.02 0.0027 STDAGE 9.66 0.0019 STDSZCD 22.49 <0.0001

TPAGROW 6.42 0.0113 DIA 8.29 0.0040 STDAGE 7.87 0.0050

SITECLCD 12.35 0.0149 TPAGROW 5.32 0.0211 SITECLCD 11.36 0.0288

STDSZCD 12.74 0.0052

Table 4.—Logistic regression analysis after systematical random sampling

All trees Hardwood Softwood

Moran’s I Geary’s C Moran’s I Geary’s C Moran’s I Geary’s C

No sampling 0.103 0.100 0.018 0.122 0.097 0.049

SRS 0.071 0.042 0.003 0.040 0.042 0.060

SYS 0.056 0.034 0.004 0.048 0.087 0.029

STRAT 0.138 0.059 0.006 0.036 -0.0009 0.039

Table 2.—Spatial autocorrelation comparison of different sampling methods.
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Much research indicates that logistic regressions appear to

be the best method for individual tree mortality modeling and

have been widely applied (Monserud, 1976; Monsderud and

Sterba 1999, Fridman and Stahl 2001, Woolons 1998, Yang et

al. 2003). In our study, logistic models are selected, and tree

mortality analysis is summarized based on these logistic models.
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