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On Estimation in k-tree Sampling

Christoph Kleinn and František Vilcko1

Abstract.—The plot design known as k-tree sampling 

involves taking the k nearest trees from a selected 

sample point as sample trees. While this plot design 

is very practical and easily applied in the field for 

moderate values of k, unbiased estimation remains 

a problem. In this article, we give a brief introduc-

tion to the history of distance-based techniques 

in forest inventory sampling, present a new and 

simple approximation technique for estimation, and 

describe how to eventually develop a design-unbiased 

estimator. This article draws on two manuscripts that 

were recently published (Kleinn and Vilcko 2006a, 

Kleinn and Vilcko 2006b), in which more details are 

elaborated.

Introduction

The plot design known as k-tree sampling, in which from a 

sample point the k nearest trees are taken as sample trees, 

is a practical response design if k is not too big. We call this 

approach here “classical k-tree sampling” to distinguish it from 

variations such as the point-centered quarter method (fig. 1) or 

T-square sampling. (e.g., Krebs 1999). 

Estimation for k-tree sampling is frequently done in a design-

based manner with expansion factors that “expand” the per-plot 

observation to per-hectare values. One of the frequently used 

estimation approaches for classical k-tree sampling is to use the 

distance to the k nearest tree as radius of a virtual circle plot 

and calculate a per-plot expansion factor. Another approach is 

to take the mean distance to the k tree from all n sample points 

to calculate an overall expansion factor to be applied to all       

n sample points. 

It had long been known, however, that k-tree sampling is not 

an unbiased estimator, but leads on average to a systematic 

overestimation of the population parameters. From simulation 

studies on different populations, Payandeh and Ek (1986) 

suggest that the relatively rare application of k-tree sampling 

in forest inventory has to do with the lack of an unbiased 

estimator. While some authors see minor problems regarding 

application of k-tree sampling because it is practical and 

because the bias in the commonly used estimators was found 

to be modest in many cases (Krebs 1999), others tend to advise 

against it when unbiased estimation is an issue because it 

violates basic principles of statistical sampling (e.g., Mandallaz 

1995, Schreuder 2004).

Empirical approaches for estimation have been investigated 

and various techniques are available. One may distinguish two 

major groups of estimators: (1) design-based estimators that 

attempt to find from the k-tree sample a suitable plot size that 

allows good extrapolation, and (2) approaches under model 

assumptions in which estimation depends on the spatial pattern 

that needs to be captured and described from the sample. Picard 

et al. (2005) give a comprehensive overview of many of these 

approaches.
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Figure 1.—Two strategies of k-tree sampling. Left: the 
“classical” k-tree plot, in which the k trees nearest to a sample 
point (+) are taken as sample trees. Right: the point-centered 
quarter method, in which the space around the sample point 
is subdivided into four quadrants; in each of those the nearest 
trees is taken so that k = 4.

Source: Kleinn and Vilcko (2006a).
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In this article, we give a brief overview of the history of k-tree 

sampling and present a new and simple empirical approxima-

tion technique for the classical k-tree plot that is elaborated in 

Kleinn and Vilcko (2006a). The way toward designing unbiased 

estimation is shown in the last section. More details about that 

approach are in Kleinn and Vilcko (2006b). 

On the History of k-tree Sampling

Loetsch et al. (1973) state that the first use of distance 

techniques in forestry applications was mentioned in the book 

“Forstmathematik” (forest mathematics) by König (1835). 

König (1835), in fact, had recognized and elaborated with 

empirical results that stand attributes such as number of stems 

and basal area depended on inter-tree distances. He developed 

a model (presented as a table) with which he determined basal 

area per hectare as a function of mean stand diameter and 

average distance between trees. This model obviously was not 

a point-to-tree distance technique, however, but a tree-to-tree 

distance technique. These tree-to-tree distance techniques 

were further developed for forest inventory in the 1940s and 

1950s (among others, Bauersachs 1942, Köhler 1952, Weck 

1953). Essed (1957) analyzed these tree-to-tree distance 

techniques and explicitly pointed to the problem of systematic 

overestimation. 

According to a literature review, Stoffels (1955) was among 

the first to elaborate point-to-tree distance sampling in forest 

inventory. His target attribute was number of stems per 

hectare (density). He investigated three-tree sampling and 

recommended to count tree number three only half (meaning 

that in the three-tree sample there were actually only two and 

a half trees counted), which was a simple empirical way to 

attempt compensating for the then unexplainable systematic 

overestimation. In Germany, with the studies of Prodan (1968) 

and Schöpfer (1969a, 1969b), k-tree sampling was broadly 

introduced into practical application of forest management 

inventories. Those authors recommended k = 6 because they 

found it to be a practical number for application and good in 

terms of statistical performance. Prodan (1968) knew about 

the systematic overestimation with the simple expansion 

factor approach that became clear in simulation studies in test 

stands. To correct for that bias he recommended taking the 

attributes of the sixth tree only half because that tree was only 

half contained in the sample plot. While this ad-hoc approach 

is difficult to justify in theoretical terms, various simulation 

studies have shown that it works reasonably well under many 

conditions (Lessard et al. 1994, Payandeh and Ek 1986).

In general, k-tree sampling has not been as readily used for 

forest inventory as fixed area plots and relascope sampling. 

A number of recent applications have been found, however, 

many of them under difficult conditions in tropical forested 

landscapes: Hall (1991, Afromontane catchment forests); 

Lynch and Rusdyi (1999, Indonesian teak plantations); Sheil 

et al. (2003, East Kalimantan natural forests); and Picard et 

al. (2005, Mali savannah). The test data used for simulations 

in this present study come from the Miombo woodlands in 

Northern Zambia.

A New and Simple Technique for Estimation in 
Classical k-tree Sampling

The systematic overestimation of the expansion factor-based 

estimator for the classical k-tree plot has been described and 

illustrated early by Essed (1957). By taking the distance to 

the k tree as a radius of a virtual sample plot, one defines 

systematically the smallest possible circular sample plot for the 

contained k trees and, therefore, the largest possible expansion 

factor—which leads immediately to the observed systematic 

overestimation. Using the distance to the (k+1) tree as plot 

radius for a k-tree plot, the expansion factor (and therefore 

the estimations) would be smaller and thus lead to systematic 

underestimation.

If using the distance to the k tree as plot radius produces a 

systematic overestimation and the distance to the (k+1) tree 

causes a systematic underestimation, we may conclude that the 

“true” (i.e., adequate for estimation) circular plot radius must 

be in between.
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Our idea is simply to use an average plot size from the 

two distances to the k and k+1 tree, in which we tested two 

approaches of calculating the plot radius:

(1) The radius is calculated as arithmetic mean of the 

distances d
k
 to the k and d

k+1
 to the k+1 tree.

(2) The radius is calculated as geometric mean of the 

circular plot areas from r = d
k
 and r = d

k+1
. This may be 

geometrically interpreted as the arithmetic mean of the 

circle plots with radii d
k
 and d

k+1
.

The bias of the these two approaches in comparison to Prodan’s 

(1968) approach is given in figure 2, in which results of a 

simulation study using a tree map are shown. With all three 

estimators, a clear positive bias exists, which is, however, 

smaller for our two approaches, particularly for small values 

of k. For about k = 5 onward, the bias for the three approaches 

is about the same. We should mention here that Prodan (1968) 

presented his approach only for k = 6. We applied it here in 

a manner analogous to k =2..12. Approach (1), in which the 

plot radius is calculated from the arithmetic mean of d
k
 and 

d
k+1

, produces consistently a smaller bias than approach (2), 

although the differences are small.

Of course, a simulation study on but one tree map is not an 

evidence of general superiority, but it may be an indication of 

promising performance. Kleinn and Vilcko (2006a) present 

additional simulations with other maps with different spatial 

patterns with similar results.

Seeing it from a practical point of view and in comparison to 

Prodan’s (1968) approach, for the new approaches one must 

make one more measurement: the distance to the k+1 tree. This 

measurement adds some additional effort, because the k+1 tree 

must be determined. For relatively small values of k, however, 

this additional effort is expected to be small.

Toward a Design Unbiased Estimator

In Kleinn and Vilcko (2006b), the authors develop a design 

unbiased estimator for the classical k-tree plot. The approach 

draws on the inclusion zone concept, in which a polygon is 

drawn around each sample tree with the area of the polygon 

a measure for the inclusion probability of this particular tree. 

Once the inclusion probability of all sample trees is known, the 

Horwitz-Thompson estimator can be used to obtain an unbiased 

estimator. 

The inclusion zone approach is closely linked to the infinite 

population approach (Eriksson 1995, Mandallaz 1991), also 

referred to as continuous population approach (Williams 2001). 

In these approaches, a forest area is considered an infinite 

population of sample points of which a subset is selected as 

a sample. That means that the dimensionless points are the 

sampling elements, and not trees or plot areas. The value that 

is being assigned to a dimensionless point comes from the 

surrounding trees. It is the plot design that defines how these 

trees around the sample point are to be selected. For fixed-area 

circle plots, for example, all trees up to a defined distance 

from the sample point are included. In relascope sampling, 

this distance is not constant but depends on tree diameter and 

basal area factor. In k-tree sampling it is the first, second, etc. 

k nearest tree to the sample point that are included and that 

determine the value assigned to this particular sample point.

Figure 2.—Bias of estimating basal area from k-tree plots 
with k = 2..12 with different estimators. The two approaches 
introduced here are contrasted to Prodan’s (1968) approach 
in which the k tree is counted half so that the k-tree sample 
actually becomes a (k-0.5)-tree sample. While Prodan (1968) 
proposed that approach for k = 6 only, we applied it here 
to k = 2..12. The results are from simulations on a tree map 
from the Miombo woodlands in Northern Zambia. Our new 
approaches exhibit smaller bias, in particular for small values 
of k. For about k > 6, the bias is about the same for all three 
compared approaches.
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It is more instructive here, however, not to follow that described 

sample-point-centered approach, but to use a tree-centered 

approach (Husch et al. 1993), which leads immediately to the 

definition of inclusion zones. Around each tree we build an in-

clusion zone such that this particular tree is selected by a sam-

ple point if it falls into that inclusion zone. It is then obvious, 

by application of basic principles of geometric probabilities, 

that the area of this inclusion zone (divided by the total area of 

the inventory region) defines the probability of selection of that 

particular tree from which the inclusion probability also can be 

derived for probabilistic sampling approaches. 

Size and shape of the inclusion zone is exclusively defined 

by the plot design that is being used. For fixed-area circular 

sample plots, the inclusion zones are circles centered around 

the trees and with the same size as the sample plot. In 

relascope sampling, inclusion zones are also circular but size is 

proportional to the tree’s basal area.

To build an unbiased estimator for any plot design, it is 

sufficient to search for the individual inclusion zones of all 

sampled trees. Eventually, for k-tree sampling, that means that 

we must find, around an individual sampled “target” tree, the 

area in which a sample point that falls there has the target tree 

as nearest, second-nearest, etc. k nearest neighbor. For k = 1 

the solution is simple; the searched inclusion zone polygon are 

the commonly known Voronoi diagrams or Dirichlet polygons, 

which have been used in different contexts in forestry (e.g., 

Lowell 1997, Moore et al. 1973, Overton and Stehman 1996).

In Kleinn and Vilcko (2006b), the authors elaborate on 

inclusion zones for k > 1. These inclusion zones contain the 

set of all points around the target tree for which this particular 

tree is either the first, second, etc. k neighbour. Those polygons 

are called higher order Voronoi diagrams. Okabe et al. (1999) 

describe approaches for their construction. To do so, the tree 

positions of neighboring trees must be known; i.e., mapped 

up to a certain distance. Figure 3 illustrates the approach forFigure 3 illustrates the approach for illustrates the approach for 

k = 3, depicting the inclusion zone for all three sample trees. 

In this case, the coordinates of 15 trees need to be mapped to 

determine this inclusion zone. 

Shape and size of the inclusion zone depends exclusively 

on tree positions and not on any attribute value of the target 

tree. That means that a considerable quantity of additional 

measurements needs to be done to be able to build the inclusion 

zones. The proper distance around the sample trees that these 

position measurements need to be done still has not been 

determined. 

When the inclusion zones of all k sample trees are known, then 

also the inclusion probabilities are known, and the Horwitz-

Thompson estimator is immediately an unbiased estimator. 

While application of the Horwitz-Thompson estimator is 

cumbersome for calculation, Valentine et al. (2001) suggest 

an easier way: one imagines that the tree-specific value of the 

target attribute is distributed evenly over the inclusion zone, 

thus forming a density that is constant over the entire inclusion 

zone. At a selected sample point, one observes the density 

values of all those inclusion zones that contain the sample 

point. The sum of these density values is the observation that 

Figure 3.—Inclusion zones for three trees in a k-tree plot for    
k = 3. The sample point is marked by x. The three circled small 
x’s are the three nearest trees. The three differently hatched 
polygons are the inclusion zones for these trees. Tree positions 
are marked as dots. To determine the inclusion zones for the     
k = 3 trees, the positions of all trees marked with bold gray 
dots need to be known.

Source: Kleinn and Vilcko (2006b).
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is used at that point. Another simple approach for calculation 

would be the one that is commonly used in relascope sampling 

building on the tree-specific expansion factors.

Conclusions

The inclusion zone approach allows building a design-

unbiased estimator (elaborated in detail in Kleinn and Vilcko 

2006b). The inclusion zones in k-tree sampling are built as 

higher order Voronoi polygons. Their size and shape vary 

and depend exclusively on the position of the surrounding 

trees, a significant difference from inclusion zones of other 

plot designs. With respect to the expected precision, it is 

important to note that the size of the inclusion zone—and 

therefore the inclusion probability as well—is not proportional 

to any tree attribute. Therefore, it is expected that overall 

performance of k-tree sampling is inferior to other plot designs. 

This hypothesis, however, is currently being researched by 

simulation studies. With an unbiased estimator available, it 

is now possible for the first time to compare k-tree sampling 

to other plot designs, in which also for k-tree sampling an 

unbiased estimator can be used (e.g., Lessard et al. 2002, 

Payandeh and Ek 1986). 

Whether our approach will be of relevance for practical 

field application depends on whether it will be possible to 

do the required tree mapping around the sample trees with a 

reasonable amount of effort. Such research is currently ongoing 

in the research group of the authors; from a selected sample 

point, polar coordinates of neighboring trees are determined by 

electronic compass and laser distance meter. The measurement 

devices are linked to a computer that calculates immediately 

the Voronoi polygons and indicates whether these polygons 

change when more and farther trees are included into the 

mapping; if the polygons do not change any more then tree 

mapping can be stopped.

It is likely, however, that approximations to estimation will 

continue to be of great practical relevance. Therefore, a simple 

approximation approach has been presented in the first half 

of this paper (elaborated in more detail in Kleinn and Vilcko 

[2006a]). In addition, it is a subject of research whether 

simple methods could approximately determine the size of the 

inclusion zones; for example, by simple regression modeling 

with the distance to the k trees being the independent input 

variables.
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