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Preliminary Results of Spatial Modeling of 
Selected Forest Health Variables in Georgia

Brock Stewart1, Chris J. Cieszewski2, and Eric L. Smith3

Abstract.—Variables relating to forest health 

monitoring, such as mortality, are difficult to predict 

and model. We present here the results of fitting 

various spatial regression models to these variables. 

We interpolate plot-level values compiled from the 

Forest Inventory and Analysis National Information 

Management System (FIA-NIMS) data that are 

related to forest health. These data included informa-

tion concerning mortality, trees killed by various 

causes of death (indicated by the FIA-NIMS variable 

AGENTCD), and species richness. 

Introduction

In this study, we were interested in gathering information about 

forest health and mortality in the Southeast. The U.S. Depart-

ment of Agriculture, Forest Service, Forest Inventory and 

Analysis (FIA) inventory data provide a good starting point for 

such analysis. The FIA data contain records of many variables, 

including information on stand structure with extensive coverage 

of large areas. We decided to use a means of displaying these 

estimates in a mapped context and/or testing for spatial trends 

that is more revealing and informative than a straightforward 

compilation of tabular estimates. The selection of appropriate 

resolution of mapping posed a challenge. While mapping State-

level estimates is too course for our purposes, FIA data are 

intended to provide accurate information only at large scales, 

and county-level estimates can typically have large sampling 

errors. Kriging techniques have been used in abundance on 

FIA data. 

The purpose of the current work was to investigate the fitting 

of various spatial models that would provide interpolation 

maps and significance testing. In this article, we focus predomi-

nantly on model fitting. That is, we attempt to find interpolation 

models with predictive value from phase 2 FIA data. Further 

research might include, e.g., incorporating Forest Health Moni-

toring (FHM) aerial surveys, which do not provide detailed 

information on stand structure but do provide large-scale trends 

of mortality and infection. Remote-sensing data such as this can 

provide information on large-area coverage of when and where 

trees are dying but cannot provide details of stand structure. On 

the other hand, plot-level data provide information on forest 

type, species, stand size, and density, etc., but are not suited 

well for detecting rare or sparse events. In the future, we would 

like to incorporate information at both scales. 

In figure 1, we give an example of a FIA plot-level value 

mapped by county. Here, the value is the number of trees killed 

by insects. Our main interest was in detecting trends in mortal-

ity, and, if possible, mortality by specific causes such as insects 

or disease. We also examined species richness. We wish to test 

if plot-level quantities like these vary across the Southeast and 

if they vary by other covariates, such as forest type, species, 

age, size, etc. We also want to examine elevation, forest cover 

type, FIA unit, physiographic region, and ecoregion because 

these covariates can be determined at prediction points (i.e., 

where no FIA plots are present). 
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Figure 1.—Relative county-level estimates of the number of trees 
killed by insects from newest Forest Inventory and Analysis 
plot-level data for each southeastern State as of August 2006.
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Examples of maps produced from interpolating FIA data 

include those in figure 2. Although these maps were made 

after fitting semiparametric penalized spline models (SPSMs) 

(Ruppert et al. 2003, Shabenberger and Gotway 2004), model 

diagnostics for these models indicate inadequate fits. In the 

following text, we discuss the possible shortcomings of trying 

to model data like this across the Southeast. As a baseline case 

for spatial modeling from the FIA phase 2 data, we compare an 

ordinary kriging (OK) (Cressie 1993, Shabenberger and Gotway 

2004) of the number of trees on forested conditions to the forest 

area map produced by Zhu and Evans (1994) in figure 3. We 

can see that the OK procedure was at least successful in detecting 

major, broad-level trends indicated in Zhu and Evans’ (1994) 

map; e.g., lack of forests along the Mississippi River and 

southern FL. We can also notice a strong relationship between 

prediction error and which State the plot-level data is in. This 

relationship can be attributed to different sampling intensities 

between States and even within a State. 

Several difficulties occur when trying to model data such as 

plot-level mortality and sources of this mortality. First of all, 

these data are rare and overdispersed. For example, over the 

whole Southeast, roughly 95 percent of the plots with a forested 

condition had zero trees killed by insects, with a sample vari-

ance-to-mean ratio of approximately 12.1. This is an extreme 

case of zero-inflated data. In situations in which the data exhibit 

inflation on one value (e.g., zero), transformations merely move 

this inflation to another value. Forest attributes, in general, 

tend to have large local variability. Also, in gathering the 

most recent FIA phase 2 data for each State in the Southeast, 

we had to use data for each State from different measurement 

years. Aside from any temporal differences that might actually 

exist in the data (e.g., one year with high mortality rates over 

the whole region), data collection methods may vary due to 

changes in FIA sampling procedures. In fact, data collection 

procedures may vary from State to State anyway, especially 

for more “obscure” plot values such as sources of mortality. 

Figure 2.—Trend maps from semiparametric penalized spline models predicting (a) forest area, (b) the number of trees on plots 
killed by insects,(c) the number of trees on plots killed by disease, and (d) the number of trees on plots killed by fire.
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To illustrate this, we provide figure 4. Here, we can see clear 

trends across States, which are due either to varying numbers 

of plots in the data, data collection procedures, or both. Even 

the newest data for SC did not contain information on sources 

of mortality (i.e., AGENTCD). Due to these difficulties, we 

Figure 3.—Zhu and Evans’ (1994) (a) forest coverage map, (b) ordinary kriging prediction on the total number of trees on forested 
conditions in plots, and (c) prediction error. 

(a) (b) (c)

resorted to fitting models from plots in only AL and GA. If 

the data were more consistent across States, we might hope to 

handle the situation of no data for one State by extrapolating 

into the State and keeping track of prediction error. 

Figure 4.—Forest Inventory and Analysis phase 2 plots with (a) symbol proportional to number of trees on plot killed by disease,  
(b) the number of trees on plots killed by insects, (c) a closer view of the same, and (d) the number of trees on plots killed by insects 
multiplied by plot expansion factor. Arrows point to an apparent trend following State boundaries. 
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Materials and Methods

We fit several models to the number of trees on plots in AL 

and GA killed by insects. Instead of kriging, or geostatistical 

models, we try spatial regression models (Cressie 1993, 

Shabenberger and Gotway 2004). We chose these models for 

several reasons. A large number of FIA plots are present, even 

for one State, and standard Kriging techniques require inverting 

an n-by-n matrix, where n equals the number of plots. This may 

be prohibitively expensive computationally, and many authors 

have chosen ad hoc methods to deal with kriging on large data 

(e.g., over a moving window). One interesting method that we 

do not explore here is the fixed rank kriging method of Cressie 

(2006) and Johannesson and Cressie (2004). This method still 

uses all of the data, but necessitates inverting only smaller 

matrices. Also, the data we work with here exhibit extreme 

departures from the standard Gaussian distribution. Instead of 

fitting a trend to the data first and then kriging the residuals, 

we try direct models to the data. Although universal kriging 

and nonlinear kriging methods may work for these data, the 

problem of large data size still exists, and we do not explore 

them here. Hence, we chose to explore models that are low 

rank in that k knots are selected in the domain where k<<n. 

The resulting models are then spline functions connected at the 

knots. Theory and software is also readily available to extend 

these models to the generalized situation of various distribu-

tions assumed on the response. 

Zero-inflated data are not rare in real-world data, and much 

effort has recently been applied to finding techniques for fitting 

models to them. Zero-inflated data, as the name implies, are 

data exhibiting a large number of zeros. These types of data 

can be found in many disciplines and often are the result of rare 

count data. Lambert (1992) provided techniques for modeling 

data with a zero-inflated Poisson (ZIP) model. Incorporat-

ing zero-inflated likelihoods in spatially explicit models is 

described in Agarwal et al. (2002), Barry and Welsh (2002), 

Fahrmeir and Echavarria (in press), Gschlobl and Czado 

(2006), Rathbun and Fei (2006), Rigby and Stasinopoulos 

(2005) and in general (not spatial) in Hall (2000), Lambert 

(1992), and Li et al. (1999). 

We used data from GA cycle 08 and AL cycle 07. We 

counted the raw (i.e., not expanded) number of trees killed 

by insects in forested conditions (LANDCLCD=1), indicated 

by AGENTCD=10. Plot species richness was determined by 

counting the number of unique species codes (SPCD) for trees 

in forested conditions on each plot. We used the R Project for 

Statistical Computing (http://www.r-project.org) packages 

SemiPar and Generalized Additive Models for Location, 

Scale and Shape to fit the models here. The SPSMs we use 

through SemiPar have a smoothing parameter fit via restricted 

maximum likelihood. Knots were automatically selected in 

SemiPar via a space-filling algorithm (Ruppert et al. 2003) with 

the default number of 50 knots. 

Results and Discussion

A histogram of the number of trees on plots killed by insects 

for only plots having at least one tree killed by insects is given 

in figure 5. In figures 6 and 7, we give histograms of residuals, 

Figure 5.—Histograms of (a) number and (b) proportion of 
trees killed by insects on forested conditions of plots in Ala-
bama and Georgia, only for plots with at least one tree killed 
by insects in a forested condition. 
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Figure 6.—Semiparametric penalized spline model Poisson 
number of trees killed by insects: (a) residuals histogram,(b) 
Q-Q plot, and (c) histogram of fitted values.

Figure 7.—Semiparametric penalized spline model zero-inflat-
ed Poisson number of trees killed by insects: (a) residuals histo-
gram. (b) Q-Q plot, and (c) histogram of fitted values.

(a) (a)

(b) (b)

(c) (c)
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Figure 8.—Local polynomial regression zero-inflated Poisson 
number of trees killed by insects: (a) residuals histogram and 
(b) Q-Q plot.

Figure 9.—Local polynomial regression negative binomial 
number of trees killed by insects: (a) residuals histogram and 
(b)Q-Q plot.

(a) (a)

(b) (b)

Q-Q plots of residuals, and  histogram of predicted values for a 

SPSM fit to the number of trees killed by insects with distribu-

tion imposed on the response being Poisson and ZIP (Lambert 

1992); we give these same plots for a local polynomial 

regression (LOESS) model fit to the number of trees killed by 

insects with distribution imposed on the response being ZIP 

and negative binomial (NB). Poisson was chosen first because 

these are count data. As we can see, however, the ZIP and NB 

performed better, which would be expected because the data 

are overdispersed. For the two ZIP models (figures 7 and 8), 

the SPSM and LOESS, it is hard to tell which one was best. 

The SPSM seemed to reach out to the extremes of the data 

better but fit worse in the middle range of the data. See figures 

8 through 11. 

We next fit models to species richness on phase 2 plots in AL 

and GA. The histogram of the number of species on plots in AL 

and GA is given in figure 12. These data had a sample variance-

to-mean ratio of 4.1. We scaled species richness to [0,1] by the 

maximum number of species on plots, and we show a fitted 

lognormal and inverse Gaussian distribution to these species 

richness distribution. We included covariates of elevation, for-

est cover type, FIA unit, physiographic regions, and ecoregion. 

These covariates were chosen because they could be determined 

for prediction points where no FIA plots are present. 
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Figure 10.—Local polynomial regression proportion of trees 
killed by insects: (a) residuals histogram, (b) Q-Q plot, and   
(c) histogram of fitted values.

Figure 11.—Local polynomial regression BI proportion of trees 
killed by insects: (a) residuals histogram, (b) Q-Q plot, and (c) 
histogram of fitted values.

(a) (a)

(b) (b)

(c) (c)
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Figure 12.—Top: histogram of species richness counts on plots 
in AL and GA with at least one forested condition. Middle and 
bottom: Two distributions fitted to the scaled species counts. 

In figures 13 and 14, we can see that models fit to the less 

dispersed plot-level value of scaled species richness, includ-

ing covariates, have better residuals and histograms of fitted 

values more resembling the histogram of the measured values. 

Nevertheless, the models we chose so far, even though flexible, 

could not handle the extreme variation in the data we tried to 

model. We will continue with other spatial methods to test for 

significance. We will also include information from remote 

sensing, such as the FHM aerial surveys. 

Figure 13.—Local polynomial regression beta-inflated species 
richness, scaled to [0,1], only on plots in AL and GA with for-
ested condition: (a) residuals histogram, (b) Q-Q plot, and (c) 
histogram of fitted values.

(a)

(b)

(c)

Figure 14.—Local polynomial regression lognormal species 
richness, scaled to [0,1], only on plots in AL and GA with for-
ested condition: (a) residuals histogram, (b) Q-Q plot, and (c)
histogram of fitted values.

(a)

(b)

(c)
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