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Landscape Scale Mapping of Forest 
Inventory Data by Nearest Neighbor 
Classification

Andrew Lister1

Abstract.—One of the goals of the Forest Service, 

U.S. Department of Agriculture’s Forest Inventory 

and Analysis (FIA) program is large-area mapping. 

FIA scientists have tried many methods in the past, 

including geostatistical methods, linear modeling, 

nonlinear modeling, and simple choropleth and dot 

maps. Mapping methods that require individual 

model-based maps to be produced are time and labor 

intensive. FIA needs a method that will enable effi-

cient production of large numbers of landscape-scale 

maps for State reports. The current study presents a 

case study for the State of Ohio of a nearest neighbor 

classification method that uses multivariate similarity 

as a criterion for attaching FIA plot data to pixels 

with unknown forest attributes to make continuous 

maps of any FIA attribute. The goal of the study was 

to devise a landscape scale mapping method that 

could be easily implemented at a national scale.

Introduction

Landscape scale maps of forest attributes have been of interest 

in the United States for decades. Sargent (1884) produced 

what appear to be the first relatively detailed, national maps 

of forestry data, which included timber volume and species 

group distribution. During the early to mid-20th century, some 

national-scale and many finer scale forest vegetation mapping 

efforts were undertaken by Federal, State, and academic 

researchers (e.g., Braun 1950; EPA 1994; Little 1971, 1981; 

Shantz and Zon 1924). Most of these data sets were created 

by either manually or semimanually digitizing vegetation 

polygons from photos or from field reconnaissance. During the 

1980s and early 1990s, however, advanced computers, such as 

Geographic Information Systems (GIS) and satellite imagery, 

became more widely available, leading to more sophisticated 

vegetation mapping efforts (e.g., Zhu 1994, Zhu and Evans 

1994). During the 1990s and early 2000s, remote sensing tech-

nology, spatial modeling procedures, and statistical software led 

to further advances in mapping. 

Satellite imagery distribution systems, along with the integra-

tion of statistical methods for image classification and spatial 

modeling with GIS, have led to numerous applications of the 

use of ground inventory data for mapping forest vegetation, as 

described by Fassnacht et al. (2006) and Andersen (1998). The 

Forest Service’s Forest Inventory and Analysis (FIA) program 

has used its inventory plot data in conjunction with remotely 

sensed data for mapping for many years (e.g., Frescino et al. 

2001, Lister et al. 2000, McRoberts et al. 2002, Moisen and 

Edwards 1999). Many of these and other techniques, such as 

linear modeling methods, are not suitable for production-level 

mapping because a separate model, and its associated overhead 

(disk storage, processing time, etc.), is generated for each map. 

A goal of the FIA program is to develop a production-level map-

ping procedure that efficiently uses staff, computing resources, 

and time in order to meet its mapping goals (USDA 1998). 

Generally, FIA’s mapping goals involve creating accurate maps 

depicting the spatial distribution and levels of forest resources 

across the landscape. These maps are often included in publica-

tions, on Web sites, and in presentations and are meant to sup-

port other data that show the quantity, distribution, and health 

of the Nation’s forests. FIA currently uses maps produced for 

State reports more as graphics and less as GIS data sets. Interest 

is growing, however, in using FIA maps as geospatial data 

sets. For example, FIA-based maps were used by the Forest 

Service’s Forest Health Protection program as ancillary inputs 

to create forest pest risk maps (Downing n.d.).
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The advent of a steady stream of imagery data from the Moder-

ate Resolution Imaging Spectroradiometer (MODIS) sensor 

(Justice et al. 1998) has led to increased use of these data for 

land cover classification. For example, FIA data have recently 

been used in conjunction with MODIS data and other GIS lay-

ers in the creation of two national-scale maps: dry aboveground 

biomass (Moisen n.d.) and forest type group (Ruefenacht n.d.). 

These maps were made using classification and regression trees 

(Breiman et al. 1984) and required large amounts of time and 

effort to produce. 

A more efficient alternative for FIA’s future national mapping 

needs is an approach based on supervised classification. In 

supervised classification, representative data (here, MODIS 

imagery and other GIS predictor data linked spatially with the 

FIA plot information) are used as a reference set. Pixels with 

unknown values for FIA attributes are populated with “nearest 

neighbor” reference data based on multivariate similarity 

between vectors of predictor data at these known locations 

and those at unknown locations. FIA data have been used in 

this way before, but generally over smaller areas, with Landsat 

data or for fewer attributes (e.g., McRoberts et al. 2002). In 

the current study, I present a case study of a nearest-neighbor, 

supervised classification method that uses FIA data, MODIS 

imagery, and GIS layers to create landscape maps of the State 

of Ohio. My goals are to produce maps that will be used for the 

FIA report that describes Ohio’s forests and to present a frame-

work for a methodology that can be applied to other large-area 

mapping problems.

Methods

Data from 691 homogeneous (single-condition) forested FIA 

plots collected in Ohio (fig. 1a) between 2001 and 2006 were 

used in the study. I assume here that the nominal date of the 

plot information is 2001 and that only marginal changes oc-

curred between the date of the imagery used in the study (2001) 

and the date the last plot was measured (2006). The distribution 

of plots in the study area is based on a hexagonal tessellation 

with one FIA plot randomly located within each 6,000 acre 

(2,428 ha) hexagon. Each FIA plot consists of four circular 48-

ft (14.6-m) diameter subplots, with one subplot located in the 

center and three equidistant subplots distributed symmetrically 

around and located 120 ft (31.6 m) from the center subplot. 

The subplots occupy 0.17 acre (0.07 ha), and the subplot array 

can be subtended by a circle of 1.5 acre (0.6 ha) in area. FIA 

attributes summarized to the plot level include basal area per 

acre of red maple (BARM) found on the plots, cubic foot gross 

volume (CFGV) of trees greater than 5 in (12.7 cm) diameter 

at breast height, occurrence of mixed upland hardwoods forest 

type (MUH), and total dry aboveground biomass (TDRYBIO). 

For details on the FIA plot design, sample layout, and statistical 

analytical methods, see Bechtold and Patterson (2006).

The predictor data used were contained in a multilayered Erdas 

IMAGINE image and consisted of 271 250-m resolution layers, 

including multidate and monthly composites and derived indi-

ces of imagery from the MODIS satellite borne sensor (Justice 

et al. 1998), several rasterized summaries of the STATSGO 

soils database compiled by the Natural Resources Conservation 

Service (1994), summaries of the landcover classes found in the 

U.S. Geological Survey National Land Cover Dataset (NLCD) 

database (Vogelmann et al. 2001), mean monthly and annual 

temperature and precipitation from the PRISM climate database 

(Daly et al. 2004), a rasterized grid representing distance to 

streams (USGS 1999), and various derivatives of the National 

Elevation Dataset (Gesch et al. 2002). Complete details of the 

steps used to prepare the data and data derivatives are on file 

at the Forest Service’s Northern Research Station (11 Campus 

Blvd, Ste. 200, Newtown Square, PA 19073). These data sets 

were precompiled, mosaicked, and clipped to U.S. Geological 

Survey NLCD 2001 mapping zones (which are similar to 

ecoregions) (Homer and Gallant 2001) for the United States, 

and portions of the zones that intersect Ohio (zones 62, 53, 52, 

51, and 47) were mosaicked to create a predictor data set.

The feature selection method I used was meant to find a subset 

of the predictor data set that would be effective at discriminat-

ing plots that are ecologically different from one another. The 

assumption of doing this is that plots have a unique ecological 

signature in feature space that can be used as a reference data 

set for labeling unknown locations in feature space. In order to 

select an effective subset of the predictor data set, a three-step 

process was used. The steps of this process were to (1) classify 

the plots based on the species composition data (independent of 
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the GIS predictor data), (2) rank the predictor attributes based 

on their ability to discriminate this species composition class, 

and then (3) choose a subset of predictors based on this rank-

ing. First, WEKA2 data mining software was used to classify 

each plot into one of 10 species composition classes (hereafter 

referred to as “forest types”) using k-means cluster analysis 

(Witten and Frank 2005), with the total basal area of each 

species forming the axes used for clustering. In other words, 

forest types were created by forming 10 classes, each of which 

contained plots with similar species composition. I arbitrarily 

chose 10 classes because exploratory analyses showed that 

choosing around 10 yielded the most even distribution of 

points across the clusters. 

Next, WEKA’s implementation of the RELIEF attribute selec-

tor (Kira and Rendell 1992) was used to rank each GIS predic-

tor variable. RELIEF worked by creating a usefulness index for 

each predictor attribute by randomly choosing a large number 

of instances from the data set and calculating for each selected 

instance the difference between the GIS predictor variable’s 

value for the closest instance of the same “forest type” and that 

of the closest member of a different forest type. In the current 

study, if instances that were located close together along the 

axis defined by a predictor attribute are of the same forest type, 

RELIEF considered the attribute useful for discriminating 

between plots with different ecological characteristics and 

ranked it higher. 

Finally, using the results of the attribute ranking, an arbitrary 

assessment of Pearson correlation matrices (to eliminate 

collinear variables with similar ranks), and my judgment from 

past use of similar data, I subjectively chose a set of 13 predic-

tors that was useful for discriminating species composition 

class and was minimally correlated (correlations are generally 

less than 0.25). The 13 variables chosen in this manner were, 

in order of usefulness, MODIS band 5 (May 9, 2001), MODIS 

Enhanced Vegetation Index (EVI) (August 14, 2001), NLCD 

percent woody wetland, MODIS band 3 (November 17, 2001), 

distance to streams, the count of the variety of aspect values 

derived from a digital elevation model (an index of topographic 

roughness), MODIS band 7 (April 7, 2001), soil pH, soil tex-

ture, X coordinate, rock volume, Y coordinate, and minimum 

temperature in November. 

Leica Geosystems’ IMAGINE2 image processing software 

was used to standardize the data set to the same measurement 

scale (0-1) and to extract values for each of the 13 standardized 

predictor layers where the FIA plots used in the analysis were 

located. IMAGINE’s minimum (Euclidean) distance classifier 

was used to impute FIA plot information from the set of known 

pixels to unknown pixels based on multivariate similarity. The 

classification procedure gave every pixel in the study area the 

plot identifier (id) value of the FIA plot that is most similar to 

it with respect to values of the 13 predictors. A simple lookup 

table was then used to link pixel values in the image to tabular 

plot level summaries of FIA attributes based on this plot id 

value (as described in Lister (2005)). For this study, the plot id 

map was recoded to create maps of several attributes: BARM, 

CFGV, MUH and TDRYBIO.

Quality assurance (QA) was performed by a novel method 

of grouping plots into contiguous clusters, with each cluster 

containing exactly 10 plots (fig. 1a). This grouping was done 

by bit interleaving of the x and y coordinates of the plots in a 

manner similar to that described by Faloutsos and Rong (1991). 

Bit interleaving can be used to order plots based on proximity 

in two dimensions by drawing a line with fractal properties 

through the study area so that each plot is visited exactly once. 

The fractal line has the property of folding in upon itself in an 

orderly manner so that, in general, groups of points next to each 

other on the line are close in space. By partitioning this line 

into clusters that contain exactly 10 plots each, the procedure 

tessellates the study area based on density of forested plots.       

I chose 10 plots for each cluster arbitrarily, based on previous 

work that found this number to be a reasonable trade off between 

having a sufficiently small spatial cluster as the analysis unit 

and a sufficiently large group of plots to characterize that spatial 

cluster. If the spatial clusters were too big, the analysis became 

less meaningful, but if not enough plots were in each cluster, 

the variance of the cluster estimates made the analysis suspect. 

By creating a raster representation of the study area and as-

signing each pixel the cluster id of the closest plot to that pixel, 

it was possible to summarize both the FIA plot data (fig. 1a) 

and the mapped estimates (fig. 1b) by cluster and construct a 

set of simple scatterplots (fig. 1c) that depict the relationship 

between the actual values (the average plot value) and the 
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estimates (the average pixel value). These relationships were 

then characterized by the parameters of the simple linear 

regression line (slope, intercept, and R2) that describes the 

relationship between the set of actual and predicted values. The 

regression line method I used is a descriptive technique meant 

simply as a QA tool—I did not attempt to make inferences 

about the significance of the parameter estimates. The goal of 

the QA procedure was to provide a tool for data consumers to 

assess the relationship between actual and predicted values in a 

spatially explicit manner. 

Results and Discussion

Many of the attributes that were selected by the RELIEF 

method are factors that would tend to influence vegetation 

composition in a landscape dominated by the effects of past 

glaciations, like Ohio. For example, soil pH, texture, and rock 

volume would be affected by past glacial activity, as would 

stream density and wetland occurrence. The MODIS-related 

imagery variables probably appeared higher in the usefulness 

ranking because of differences in phenology of the different 

species composition groups—certain species assemblages 

reflect light differently at different times of the year. The goal 

of the attribute selection approach was not strictly to extract 

biologically meaningful predictor variables in a quantitative 

way. Rather, it was to use a combination of RELIEF, correla-

tion tests, and user opinion as a guide in attribute selection. It 

is noteworthy that the chosen variables (which were ranked 

higher by RELIEF) probably have at least some functional 

relationships with factors that affect plant growth in Ohio.

The maps of the FIA attributes selected are shown in figure 2 

along with magnified areas to show examples of the finer scale 

variability of the estimates. Ohio is nearly 70 percent nonforest, 

so I used a nonforest mask (the NLCD 1992 data) to mask out 

nonforest areas and water, which accounts for some of the ob-

served patterns in the maps. Nonforest masking allows the map 

to retain certain landscape features that FIA doesn’t measure 

(e.g., the occurrence of rivers) while imputing FIA attributes to 

forested areas of the State. 

In general, the southwest part of the State has more biomass 

and volume than other parts of the State. The landscape maps 

produced clearly show these patterns of the FIA attributes 

across the landscape, and the example areas that are shown 

at higher resolution show some of the finer scale pattern that 

the modeling procedure produces. In general, however, the 

interpretation of these maps is best made at the landscape level. 

Pixel-scale interpretation is possible, although inadvisable 

because it is nearly impossible to find QA reference data that 

correspond well with MODIS pixels. The FIA plots cover 

0.067 ha, or approximately 1/100 of a 250-m MODIS pixel—

thus making plot-pixel accuracy statements nearly meaningless.

On the other hand, the QA results within the zones depicted in 

figure 1 can serve to inform the user about the relative utility 

of the maps at a given geographic scale. Figures 3a, 3b, 3c, and 3d 

show the relationships (and corresponding diagnostic statistics) 

between sets of actual and predicted levels of the FIA attributes. 

The r2 values ranged from 0.4 (for the biomass-related 

Figure 1.—(a) Contiguous clusters containing 10 plots each 
are created. Regions are built around each cluster using a 
GIS, and cluster-level summaries of the FIA plot data are 
calculated. (b) Map-based estimates are summarized for each 
region. (c) Scatterplots are created along with simple linear 
regression line diagnostics to characterize the actual vs. 
predicted relationship.

(a) (b)

(c)
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Figure 2.—Maps of total dry aboveground biomass (TDRYBIO), occurrence of mixed hardwoods forest type (MUH), cubic foot gross 
volume (CFGV) of trees, and basal area per acre of red maple (BARM), with small areas shown at higher resolution to show local detail.

Figure 3.—Actual vs. predicted scatterplots and associated simple linear regression diagnostics of (a) total dry aboveground 
biomass, (b) mixed upland hardwoods forest type, (c) cubic foot gross volume, and (d) basal area per acre of red maple.

(a)

(c)

(b)

(d)
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variables) to 0.7 (for the basal of red maple). The slope and 

intercepts of the simple linear regression lines that describe 

the relationships between actual and predicted values tend to 

indicate an overprediction of low actual values and an under-

prediction of high values. I have encountered this phenomenon 

in many other multivariate modeling methods and believe that 

it occurs because weak univariate and multivariate relationships 

between an FIA plot and the MODIS pixel on which it sits tend 

to increase the occurrence of misclassification. In most FIA 

data sets, a random assignment of an FIA plot to an unknown 

pixel (which is the extreme of what occurs in misclassification) 

will always yield an estimate closer to the mean of the value 

for all FIA plots involved than it will a value near the extremes. 

This principle leads to the observed pattern of truncation of the 

variance of the set of estimates.

The main reason I chose the novel QA method I used was to 

guarantee that an equal number of FIA plots would be in each 

QA zone (fig. 1a). In that manner, the confidence I can put in 

each QA point is equal with respect to the FIA plots, which 

generally show the largest amount of variability. Had I chosen 

another approach using a regular tessellation of the study area 

to produce QA zones, large areas of the State would not have 

been assessed because cells in mostly nonforest areas would 

not have at least 10 FIA plots and would not be used as valid 

QA polygons. By grouping plots using the bit interleaving 

method, not only am I able to perform the QA method within 

contiguous geographic regions but I also have increased the 

interpretability of the results of the analysis. Interpreting these 

QA results is predicated on recognizing that each QA zone 

represents a roughly equal amount of forest land, not total land.

The utility of landscape maps such as these is tempered by the 

truncation of the variance I observe in the QA results. Were 

the goal of my study to create an accurate map of a single FIA 

attribute, I would have optimized my choice of predictors and 

modeling technique. For the purposes of FIA’s State reporting, 

however, a method that produces a single map (the plot id map) 

and uses a lookup table to create a map of any FIA attribute 

that can be associated with a plot is clearly desirable. The land-

scape maps that I have produced not only show the distribution 

of the attributes of interest across the landscape but also retain 

logical consistency. Each map produced retains the entire plot 

record for each pixel; thus, e.g., a situation where the basal 

area of red maple at a given location is predicted to be higher 

than that of the total basal area of all species cannot occur. The 

disadvantage of this technique, however, is that any individual 

map that was not produced using optimal methods or predictor 

data is not optimized for accuracy. New imputation techniques, 

like those being implemented by Wilson (2006), use advanced 

data reduction methods and attribute weighting, which could 

mitigate this problem. These advanced methods show great 

promise for national implementation, and future work will be in 

support of this goal.
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