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Summary

• Isoprene is the most important nonmethane hydrocarbon emitted by plants. The
role of isoprene in the plant is not entirely understood but there is evidence that it
might have a protective role against different oxidative stresses originating from heat
shock and/or exposure to ozone (O3). Thus, plants under stress conditions might
benefit by constitutively high or by higher stress-induced isoprene emission rates.
• In this study, measurements are presented of isoprene emission from aspen (Populus
tremuloides) trees grown in the field for several years under elevated CO2 and O3.
Two aspen clones were investigated: the O3-tolerant 271 and the O3-sensitive 42E.
• Isoprene emission decreased significantly both under elevated CO2 and under
elevated O3 in the O3-sensitive clone, but only slightly in the O3-tolerant clone.
• This study demonstrates that long-term-adapted plants are not able to respond
to O3 stress by increasing their isoprene emission rates. However, O3-tolerant clones
have the capacity to maintain higher amounts of isoprene emission. It is suggested
that tolerance to O3 is explained by a combination of different factors; while the
reduction of O3 uptake is likely to be the most important, the capacity to maintain
higher amounts of isoprene is an important factor in strengthening this character.
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Introduction

Isoprene is the most abundant hydrocarbon emitted by
vegetation, and this emission may have large consequences for
the chemistry of the atmosphere (Guenther et al., 1995;
Wang & Shallcross, 2000; Karl et al., 2004; Yokouchi &
Ambe, 2007). The genus Populus includes some of the highest

isoprene-emitting species (Lenz et al., 2001). Populus species
are widely used in short-rotation plantations that are becoming
common in agroforestry (FAO, 2005), thus contributing
heavily to the global isoprene pool released into the
atmosphere. Global change is expected to influence heavily
isoprene emission from plants. Global warming is expected to
stimulate isoprene emission, but the effects of rising
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atmospheric CO2 and tropospheric ozone (O3) episodes
remain uncertain, in particular because of the indirect and
feedback effects that might occur at the ecosystem level (Arneth
et al., 2008). A series of experiments showed a decrease of
basal isoprene emission under elevated CO2 (Rosenstiel et al.,
2003; Possell et al., 2004; Scholefield et al., 2004). Using
different models, it was estimated that the positive effect of
warming on global isoprene emission might be balanced by
the negative effect of rising CO2 concentration (Arneth
et al., 2008), with crucial repercussions on tropospheric
ozone and aerosols (Liao et al., 2006). While we are aware of
the important role of isoprene on the formation of O3, very
little is known about the effect of elevated tropospheric O3
on the emission of isoprene or volatile organic compounds.
In a few laboratory studies it was observed that isoprene
emission might increase following exposure to a high level of
O3 (Velikova et al., 2005a), although the effect seems to be
modulated by the position and the age of the leaf (Fares et al.,
2006). Different responses to O3 in terms of monoterpene
emission rates were observed in various Mediterranean species
(Llusià et al., 2002). The role of isoprene in protection against
oxidative stress deriving from O3 exposure has been more
thoroughly investigated (Loreto & Velikova, 2001; Velikova
et al., 2005b). In particular it has been shown that when
isoprene is provided to nonemitting plants, O3 damage is
considerably reduced, whereas O3 damage is induced when
isoprene synthesis is inhibited in isoprene emitters (Loreto &
Fares, 2007). Lerdau (2007) suggested that increasing the
concentration of atmospheric O3 will favour isoprenoid-
emitting species over nonemitting species because of the
protective role of isoprenoids on O3 stress.

We measured isoprene emission in an O3-tolerant clone
(271) and an O3-sensitive clone (42E) of aspen grown for
several years under elevated O3 and elevated CO2, alone or in
combination, at the AspenFACE facility. In a previous
manuscript we showed that isoprene synthase (ISPS), the
enzyme responsible for isoprene synthesis, was inhibited at
both transcriptional and translational levels by treatment with
O3. In this study we present data deriving from a large
campaign carried out in early summer and aimed to establish
whether the different O3 sensitivity of clones is related to O3
uptake and isoprene emission.

Materials and Methods

Site description

The experiment was carried out at the AspenFACE facility
located in Rhinelander (Northern Wisconsin, USA). The
AspenFACE experiment started in 1998 when 12 experimental
plots were planted that underwent four different treatments,
as follows: ambient CO2 and O3 (control); elevated CO2 and
ambient O3 (CO2); ambient CO2 and elevated O3 (O3); and
elevated CO2 and elevated O3 (CO2 + O3). The target for

elevated CO2 at the AspenFACE is 560 ppm and for elevated
O3 is 1.5× ambient concentration. Details on the layout of the
plots and of the fumigation performances are given in the
AspenFACE website (http://aspenface.mtu.edu). In our
study, samples were collected only within the sectors occupied
by the trembling aspen (Populus tremuloides Michx.) clones.
Two clones were investigated, namely 271 (O3 tolerant) and
42E (O3 sensitive) (Isebrands et al., 2001; Karnosky et al., 2003).
These two clones exhibited the most contrasting responses to
O3 in a previous campaign focusing on the isoprene synthase
gene and isoprene synthase protein (Calfapietra et al., 2007).

Leaf gas-exchange measurements

An intensive campaign was carried out from 26 June to 12
July 2006 to measure leaf gas exchange in six sun-exposed
leaves from the upper canopy of each clone in each plot.
Measurements were carried out on sunny days and from 10:00
to 16:00 h every day in order to measure parameters under
homogeneous environmental and physiological conditions.

A LI-COR 6400 (LI-COR Inc., Lincoln, NE, USA) infrared
gas analyzer was used for measurements of photosynthesis,
stomatal conductance to water vapor diffusion (gs) and emission
of isoprene under environmental conditions that were previously
standardized (basal emission, Guenther et al., 1991). Leaf
temperature was set at 30°C and photosynthetic photon flux
density (PPFD) at 1000 µmol m−2 s−1. Measurements were
carried out at the O3 and CO2 concentrations at which plants
were growing. Peak hourly O3 concentrations during the
campaign were 46 ppb and 65 ppb in the ambient and elevated
O3 plots, respectively. To avoid CO2 oscillations during
measurements, a fixed CO2 concentration of 560 and 370 ppm,
simulating growth conditions in the different plots, was
set with the LI-COR 6400 equipment. The outlet of the
LI-COR 6400 cuvette was connected to a Fast Isoprene
Sensor (Hills Scientific, Boulder, CO, USA) for online meas-
urements of isoprene emission, as described by Hanson &
Sharkey (2001).

Ozone uptake was calculated by multiplying data of O3
concentration and stomatal conductance to O3 during leaf
gas-exchange measurements (Emberson et al., 2000). Stomatal
conductance to water vapor diffusion (gs) was converted to O3
conductance by dividing the gs value by the coefficient of
molecular diffusivity of O3 in water vapor (1.68), and assuming
that the concentration of O3 inside the intracellular spaces of
the leaf is approximately zero (Laisk et al., 1989).

After measurements were taken, leaves were immediately
frozen in dry ice and then stored at −80°C until used in
biochemical assays.

Biochemical assays

The assay for dimethylallyl diphosphate (DMADP) was
carried out on tissue samples previously ground and subjected

http://aspenface.mtu.edu
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to acid hydrolysis with 1 m H3PO4 at 60°C for 30 min. The
powdered leaf samples were incubated with 500 µl of H2O
and 500 µl of H3PO4 in 4-ml vials sealed with inert caps. Pure
N2 was continuously flushed in the vials at a flux of
100 ml min−1. The air exiting the vial was injected directly
into the Proton Transfer Reaction-Mass Spectrometer (PTR-MS;
Ionicon, Innsbuck, Austria). The amount of DMADP was
calculated after measuring the amount of isoprene evolved by
the hydrolysis (protonated m/z 69), as indicated by Fisher
et al. (2001) and Brüggeman & Schnitzler (2002).

Standard DMADP (1 mg ml−1; Sigma-Aldrich, St Louis,
MO, USA) was used at amounts of 2.5, 5, 10 and 20 µl for
calibrations of the PTR-MS.

Total carotenoids were extracted in 96% ethanol and detected
spectrophotometrically, as described in Calfapietra et al. (2003).

Statistics

Analysis of variance (ANOVA) was carried out to determine
the effects of elevated CO2, elevated O3 and clone. The systat
11 software (Systat Software Inc., Richmond, CA, USA)
general linear models procedure was used. Thereafter, the
significance within each combination of clone, CO2 and O3
treatments was calculated using Fischer’s multiple comparison
procedure. Differences between means were considered
significant at a P value of < 0.05.

Results

Plants grown at elevated CO2 had higher photosynthesis but
lower isoprene emission than controls grown at ambient CO2.
The CO2 effect on photosynthesis was significant for both
clones, whereas the effect on isoprene was only significant for
the O3-sensitive clone 42E (Fig. 1, Table 1). Under conditions
of elevated CO2, DMADP concentrations dropped considerably
in both clones compared with the control, whereas the
amount of carotenoids was only slightly affected.

Stomatal conductance to water vapor diffusion (gs) and O3
uptake were not significantly affected by elevated CO2, although
a decrease was observed in clone 271 (Fig. 1, Table 1).

Table 1 Values of leaf gas exchange, isoprene emission, and dimethylallyl diphosphate (DMADP) and carotenoid contents of the leaves in the 
aspen (Populus tremuloides) clones 271 (O3-tolerant) and 42E (O3-sensitive) in the four treatments

Control CO2 O3 CO2 + O3 P values

271 42E 271 42E 271 42E 271 42E CO2 O3 Clone

Assimilation (µmol m–2 s–1) 12.9ab 
 (0.3)

13.7ab 
 (0.3)

17.4cd 
 (0.7)

20.2d 
 (0.5)

11.7b 
 (1.1)

12.7ab 
 (1.6)

15.4ac 
 (1.4)

15.1ac 
 (1.8)

0.000 0.010 0.184

gs (mol m–2 s–1)   0.20ab 
 (0.01)

0.24ab 
 (0.02)

  0.15b 
 (0.01)

  0.26ab 
 (0.03)

  0.19ab 
 (0.04)

  0.28a 
 (0.08)

  0.16b 
 (0.03)

  0.20ab 
 (0.05)

0.231 0.878 0.027

Ci (ppm) 207a 
(5)

214a 
(8)

292b 
(12)

354b 
(15)

203a 
(23)

221a 
(32)

299b 
(27)

335b 
(28)

0.000 0.872 0.054

Ozone uptake (nmol m–2 s–1)   5.2a 
 (0.3)

6.3a 
 (0.6)

  3.5a 
 (0.19)

  6.1a 
 (0.6)

  7.9ab 
 (2.5)

11.7b 
 (4.4)

  6.3ab 
 (1.7)

  8.0ab 
 (2.2)

0.233 0.044 0.137

Isoprene emission (nmol m–2 s–1) 47.1a 
 (0.7)

44.5a 
 (2.6)

41.6ab 
 (3.6)

34.4c 
 (3.4)

40.4abc 
 (3.1)

35.5bc 
 (0.7)

36.2bc 
 (1.5)

23.9d 
 (1.3)

0.000 0.000 0.001

DMADP (ng mg–1 FW)   2.6a 
 (0.2)

2.5a 
 (0.2)

  1.8b 
 (0.2)

  1.8b 
 (0.2)

  1.9b 
 (0.1)

  2.0b 
 (0.1)

  1.8b 
 (0.1)

  2.1ab 
 (0.1)

0.003 0.173 0.561

Carotenoids (mg g–1 FW)   0.73a 
 (0.03)

  0.61a 
 (0.08)

  0.69a 
 (0.06)

  0.56a 
 (0.03)

  0.69a 
 (0.10)

  0.53a 
 (0.03)

  0.70a 
 (0.01)

  0.56a 
 (0.04)

0.806 0.805 0.043

The effect of CO2, O3 and clone is indicated by the P values in the last three columns at the right of the table (a significant effect is shown in 
bold). The interactions between these factors are never significant and therefore are not reported. Letters in superscript indicate differences 
identified from the post hoc multiple comparison using the Fischer’s test. For each parameter, values with the same letter are not significantly different. 
Values are means (SE) (n = three plots). FW, fresh weight.

Fig. 1 Treatment effect calculated as treated (T) over control (C) for 
O3 uptake (squares), assimilation rates (triangles) and isoprene 
emission (circles) by aspen (Populus tremuloides) trees. Closed 
symbols, O3-tolerant clone 271; open symbols, O3-sensitive 
clone 42E.
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Elevated O3 induced a drop in both photosynthesis and
isoprene emission, the latter being more affected. The DMADP
concentration also decreased under conditions of elevated O3,
but to a lesser extent than under elevated CO2. Ozone uptake
was largely increased under elevated O3, especially in clone
42E which also showed a slight O3-induced increment of gs.

When elevated O3 was combined with elevated CO2, the
stimulating effect of CO2 on photosynthesis was almost
completely suppressed, especially in the case of clone 42E.
The combination of elevated CO2 and O3 induced a large

decrease in the isoprene emission rate, especially in clone
42E. The concentrations of DMADP were also reduced in
comparison with the control, whereas the amount of carote-
noids did not change significantly with treatments, but were
lower in clone 42E than in clone 271.

Isoprene emission rates decreased linearly with the increase
of intercellular CO2 concentration (Ci) for both clones and in
both O3 treatments. At a given value of Ci, isoprene emission
was lower in elevated O3 than in ambient O3, and was also
lower in clone 42E than in clone 271 (Fig. 2).

Differences between clones became more evident when
different isoprene emission rates and O3 uptake were compared.
Ozone uptake was higher in clone 42E than in clone 271,
whereas isoprene emission was higher in clone 271 than in
clone 42E at all isoprene emission levels (Fig. 3). Interestingly,
differences in O3 uptake between clones increased with the
increase of O3 uptake (slope significantly different from 1,
intercept not significantly different from 0). Differences in
isoprene emission rates between clones were larger at low rates
(corresponding to values under elevated O3) than at higher rates,
as shown by the intercept being significantly different from 0.

Discussion

Both elevated CO2 and O3 induced a decrease in isoprene
emission rates in closed canopy free air CO2 enrichment
(FACE)-grown trees. However, the effect of elevated CO2 was
significant for the O3-sensitive clone but not for the O3-tolerant
clone. A reduction of isoprene emission under elevated CO2
was previously found in experiments in closed environments
(Rosenstiel et al., 2003; Possell et al., 2004), in natural springs

Fig. 3 Comparison between the aspen 
(Populus tremuloides) O3-tolerant clone 271 
and the O3-sensitive clone 42E in O3 uptake 
(squares) and isoprene emission (circles). Each 
point represents the values of the two clones 
in each plot. The dotted line represents the 
1:1 line. Fit line for O3 uptake has R2 = 0.91 
and P < 0.0001, whereas for isoprene 
emission R2 = 0.72 and P < 0.001.

Fig. 2 Relationship between intercellular CO2 concentration (Ci) and 
isoprene emission rates in aspen (Populus tremuloides) O3-tolerant 
clone 271 (circles) and in the O3-sensitive clone 42E (triangles) under 
ambient (closed symbols) or elevated (open symbols) O3. Each 
symbol represents the value of one plot. R2 values range from 0.60 
and 0.85 and P values from 0.04 to 0.008.
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(Scholefield et al., 2004) and at different FACE sites (Monson
et al., 2007), but no significant effect of elevated CO2 on
isoprene emission was observed for Populus alba in the
POP-EUROFACE experiment (Loreto et al., 2007). A decrease
of isoprene emission with increasing Ci has been measured
previously (Loreto et al., 2007; Monson et al., 2007). Here we
show that this relationship exists in different clones and also
under conditions of elevated O3. This confirms the observed
CO2 sensitivity of isoprene synthesis, probably because the
cytosolic source of carbon for isoprene is more efficiently
competed for by respiratory processes under high CO2
(Rosenstiel et al., 2003; Loreto et al., 2007). For each value of
Ci, isoprene emission was higher in the O3-tolerant clone than
in the O3-sensitive clone, and higher under ambient O3 than
under elevated O3.

The high Ci value measured in clone 42E was associated
with a high gs value, which is typical of this clone (Darbah,
2007). The effect of clone on Ci was not fully significant
(P = 0.054) because of the high variability of measurements.
However, O3 uptake was higher in clone 42E than in clone
271 in all plots. In addition, the gs value of clone 42E plants
was not reduced under elevated O3, whereas this is usually the
case in other aspen clones (Karnosky et al., 2003). High Ci
might be also the consequence of inefficient photosynthesis
(Evans & Loreto, 2000). However, photosynthesis in the
O3-sensitive and O3-tolerant clones was similar within each
treatment and does not explain the differences observed of Ci.
Variability in Ci was quite high and differences were strong
both among clones and CO2 treatments, where values of the
Ci/Ca ratio (where Ca is the ambient CO2 concentration) were
found to be lower under ambient CO2 than under elevated
CO2. This might be attributed to the onset of a hot and dry
period that reached a peak later in the season and that affected
trees under ambient CO2 to a major extent, mainly as a result
of generally higher stomatal conductance.

Clone 42E was more sensitive to O3 than clone 271 in several
experiments, showing decreased photosynthesis, decreased
growth rates and increased visible symptoms (Isebrands et al.,
2001; Wustman et al., 2001; Karnosky et al., 2003). In this
study, however, the expected decline of photosynthesis under
O3 was not observed. This may be attributed to the fact that
the campaign was carried out quite early in the season.
Noormets et al. (2001) showed that the negative effect of O3
becomes evident only in leaves with a high leaf plastochrone
index (i.e. on older leaves undergoing a long exposure to O3).
This finding is particularly important because it shows that
the effect of O3 on isoprene synthesis is greater, or occurs earlier,
than that on assimilation. Unfortunately, data on specific leaf
area are not available for all clones and for all treatments and
therefore it is not possible to assess whether variations
observed on a leaf area basis for these clones would have been
different on a leaf mass basis.

High O3 uptake is probably the main reason why clone
42E is very sensitive to O3 (Karnosky et al., 2003). However,

isoprene emission may also play a role in O3 sensitivity. It has
been demonstrated that plants emitting higher amounts of
isoprenoids are more protected against oxidative stress, probably
because isoprenoids can increase the cohesion between cellular
structures and can scavenge O3 inside leaves (Loreto & Velikova,
2001; Loreto & Fares, 2007). This second hypothesis might
lead to the idea that decreased isoprene emission rates under
elevated O3 are a result of the fact that isoprene is reacting
with O3 before exiting the leaf. However, it has been explained
that the lifetime of isoprene in our measurement conditions
is c. 8 h (Calfapietra et al., 2007) and therefore the contribution
to O3 uptake as a result of scavenging by isoprenoids is important
for monoterpenes but negligible for isoprene (Fares et al., 2008).

Isoprene emission was considerably lower in the O3-sensitive
clone, particularly when the emission was reduced by elevated
O3. Therefore, we suggest that the capacity to maintain higher
levels of isoprene emission contributes to the O3 tolerance of
clone 271.

Moreover, carotenoid content was higher in clone 271
leaves than in clone 42E leaves. Carotenoids are formed
through the same biochemical pathway as isoprene (Laule
et al., 2003) and are able to quench singlet oxygen and other
reactive oxygen species (Asada, 2006). The finding that both
isoprene and carotenoids are higher in clone 271 suggests that
resistance to O3 is related to the activation of the entire
metabolic pathway of isoprene formation, including both
volatile and nonvolatile compounds with antioxidant action.
However, our experiments do not rule out that isoprene
emission and the amount of carotenoids remain higher in
O3-tolerant lines because of independent O3 tolerance mech-
anisms that preserve isoprene emission capacity and carotenoids
amount independently.

In a previous paper (Calfapietra et al., 2007) we showed
that the level of isoprene synthase gene expression and
amount of isoprene synthase protein were reduced in aspen
clones grown under elevated O3, especially in sensitive clones.
This report, on the other hand, shows that DMADP, the
substrate for isoprene synthesis, decreased significantly only
under elevated CO2. Therefore, the decline of isoprene emission
observed when elevated CO2 and elevated O3 co-occur may
be exacerbated by a combination of substrate limitation and
enzyme limitation. Moreover the amount of DMADP was very
similar between clones, suggesting that differences in iso-
prene emission between clones might be caused more by
differences in the enzyme amount or activity rather than by the
substrate concentration.
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