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Estimates of forest area are among the most common and useful information provided by national forest
inventories. The estimates are used for local and national purposes and for reporting to international agree-
ments such as the Montréal Process, the Ministerial Conference on the Protection of Forests in Europe, and the
Kyoto Protocol. The estimates are usually based on sample plot data and are calculated using probability-based
estimators. These estimators are familiar, generally unbiased, and entail only limited computational complexity,
but they do not produce the maps that users are increasingly requesting, and they generally do not produce
sufficiently precise estimates for small areas. Model-based estimators overcome these disadvantages, but they
maybebiased and estimation of variancesmaybe computationally intensive. The study objectivewas to compare
probability- and model-based estimators of mean proportion forest using maps based on a logistic regression
model, forest inventory data, and Landsat imagery. For model-based estimators, methods for evaluating bias
and reducing the computational intensity were also investigated. Four conclusions were drawn: the logistic
regressionmodel exhibited no serious lackoffit to the data; all the estimators produced comparable estimates for
mean proportion forest, except for small areas; probability-based inferences enhanced using maps produced
increased precision; and the computational intensity associated with estimating variances for model-based
estimators can be greatly reduced with no detrimental effects.
Inc.
Published by Elsevier Inc.
1. Introduction

Forest area is one of the mostly commonly assessed variables by
national forest inventories (NFI). It is also an indicator specified by
the two primary forest sustainability agreements, the Montréal
Process (2005) and the Ministerial Convention on the Protection of
Forests in Europe (2009). In addition, parties to the United Nations
Framework Convention on Climate Change (UNFCCC, 2007) and the
Kyoto Protocol (1997) submit annual reports of emissions for six
land use categories of which one is forest. Of particular impor-
tance, forest is the only category whose resources can be managed to
produce a positive effect on the greenhouse gas balance (Cienciala
et al., 2008).

NFI sample plot data are the primary source of information for
estimating forest area. Traditionally, NFIs have reported estimates
calculated using probability-based estimators, also characterized as
design-based estimators, but generally only for large areas such as
countries, regions within countries, states, and provinces. With
probability-based approaches estimates are based on sample plot
observations, and the validity of inference is based on the probabilistic
nature of the sampling design. The primary advantages of probability-
based estimators are that they are familiar and are generally unbiased.
The disadvantages are that they do not produce the maps that users
increasingly request; they do not necessarily produce estimates con-
sistent with maps; and, because of small sample sizes, they do not
yield sufficiently precise estimates for small areas.

Model-based approaches, sometimes characterized as model-
dependent approaches (Hansen et al., 1983), use predictions based
on models and ancillary variables to produce estimates. The primary
advantages of model-based estimators are that they produce maps as
by-products, estimates that are consistent with the maps in the sense
that they represent the aggregation of population unit predictions,
and more precise estimates for small areas. Their primary disadvan-
tages are that they are not necessarily unbiased, and they are often
computationally intensive.

Stratified and model-assisted estimators can use maps based on
models and ancillary data to increase precision. However, because the
validity of the inferences obtained using these estimators is still based
on probability samples, they are characterized as probability-based. In
the sense that inferences based on these estimators use models but
depend on probability samples for validity, they may be considered to
represent a middle-ground between sampling random sampling and
model-based estimators.

The objective of the study was to compare approaches to inference
using probability- and model-based estimators of mean proportion
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forest. The emphasis was onmean proportion forest rather than forest
area, because the latter can be estimated as the product of mean
proportion forest and total area which is usually known from other
sources. A logistic regression model was used with forest inventory
sample plot data and Landsat Thematic Mapper (TM) imagery to
construct amap of estimates of the probability of forest for each image
pixel. Maps based on the estimates were used with stratified and
model-assisted estimators to enhance probability-based inference
and served as the basis for model-based inference. Issues of bias
assessment and computational intensity were addressed for the
model-based approach. Comparisons of inferential approaches were
based on comparisons of estimates of mean proportion forest and
standard errors of the estimates for areas of interest (AOI) of varying
sizes.
2. Data

The study area was defined by the portion of the row 27, path 27,
Landsat scene in northern Minnesota, USA (Fig. 1). Land use for the
study area consists of forest land dominated by aspen-birch and
spruce-fir associations, agriculture, wetlands, and water. TM imag-
ery was acquired for three dates corresponding to early, peak, and
late seasonal vegetative stages (Yang et al., 2001), April 2000, July
2001, and November 1999. Preliminary analyses indicated that the
normalized difference vegetation index (NDVI) (Rouse et al., 1973)
and the tasseled cap (TC) transformations (brightness, greenness,
and wetness) (Crist & Cicone, 1984; Kauth & Thomas, 1976) were
superior to both the spectral band data and principal component
transformations with respect to predicting the probability of forest
cover. Thus, 12 TM-based variables were used, NDVI and the three
TC transformations for each of the three image dates. Centers for 14
Fig. 1. Study area.
circular AOIs were selected to provide a systematic sample of the
study area.

Forest inventory data for 2232 permanent field plots observed
between the beginning of 1999 and the end of 2003 were available for
the study area. Of these plots, 731were locatedwithin 15 km of the 14
AOI centers. The plot locations had been established by the Forest
Inventory and Analysis (FIA) program of the U.S. Forest Service using
an equal probability sampling design (Bechtold & Patterson, 2005;
McRoberts et al., 2005). Each plot consists of four 7.32-m (24-ft)
radius circular subplots, and the subplots are configured as a central
subplot and three peripheral subplots with centers located at 36.58 m
(120 ft) and azimuths of 0°, 120°, and 240° from the center of the
central subplot. In general, locations of forested or previously forested
plots are determined using global positioning system receivers,
whereas locations of non-forested plots are verified using aerial
imagery and digitization methods. For this study, only data for the
central subplot of each plot were used to avoid issues related to lack of
independence in the selection of locations of subplots of the same
plot.

Field crews visually estimate the proportions of subplot areas for
all land use conditions. Subplot estimates of proportion forest area
are obtained by collapsing land use conditions into forest and non-
forest classes consistent with the FIA definition of forest land: area of
at least 0.4 ha (1.0 ac), external crown-to-crown width of at least
36.58 m (120 ft), stocking of at least 10%, and forest land use. Of the
2232 central subplots, 568 were completely non-forested, 13 were
partially non-forested and partially forested, and 1651 were com-
pletely forested. Of the 731 central subplots with centers within
15 km of the 14 AOI centers, 176 were completely non-forested, 13
were partially non-forested and partially forested, and 542 were
completely forested. The spatial configuration of the FIA subplots with
centers separated by 36.58 m and the 30-m×30-m spatial resolution
of the Landsat imagery permits individual subplots to be associated
with individual image pixels.

3. Methods

All analyses were based on three underlying assumptions: (1) a
finite population consisting of N units in the form of 30-m×30-m
Landsat pixels, (2) an equal probability sample of n population units
in the form of observations of the central subplots of FIA plots, and (3)
availability of ancillary data in the form of the 12 Landsat-based
spectral transformations for each population unit. Although the
subplot area of 167.87 m2 is approximately 19% of the 900 m2 pixel
area, subplot observations were assumed to characterize entire pixels.
In the following sections, the terms population unit and pixels are
used interchangeably.

3.1. Logistic regression model

Multiple approaches for estimating proportion forest for image
pixels may be used including, but not limited to, maximum likelihood
(Magnussen et al., 2001), discriminant analysis (Tomppo et al., 2001),
neural networks (Liu et al., 2003), nearest neighbors (McRoberts et al.,
2002b; Tomppo et al., 2009), and various forms of regression. For data
similar to those used for this study, a logistic regression model was
previously found to produce positive results. McRoberts et al. (2006)
constructed a map of the probability of forest cover using a logistic
regression model with FIA data and TM imagery and used the map to
construct strata for use with a stratified estimator. A similar map was
constructed using the same methods and served as the basis for a
model-based approach to estimating forest area (McRoberts, 2006).
Finally, McRoberts (2009) compared nearest neighbors, discriminant
analysis, and multinomial logistic regression approaches for con-
structing categorical forest attribute maps and found the logistic
regression approach to be superior.
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For binomial logistic regression, the probability, μi, of forest cover
for the ith pixel was estimated using a logistic regression model of the
form,

μ i = EðyiÞ + fðXi;βÞ =
exp ∑

J

j=1
βjxij

 !

1 + exp ∑
J

j=1
βjxij

 ! : ð1Þ

where exp(.) is the exponential function, β is vector of parameters to
be estimated, xij is the value of the jth spectral transformation for the
ith pixel, and E(.) is statistical expectation. For this study, the model
parameters were estimated by maximizing the likelihood,

L = ∏
n

i=1
μyi
i ð1−μiÞ1−yi ;

using data for the 2219 central FIA subplots with centers in the TM
scene that were completely non-forested (yi=0) or completely
forested (yi=1) The variance of µî is estimated as,

Vârðμ̂ iÞ = Côvðμ̂i; μ̂iÞ = Z′
i V β̂Z; ð2Þ

and the covariance between µ̂i and µ̂j is estimated as,

Côvðμ̂i; μ̂jÞ = Z′
i V β̂ Zj; ð3Þ

where

zij =
∂f ðXi; β̂Þ

∂βj
;

and Vβ̂ is the estimated covariance matrix for the parameter esti-
mates. Vβ̂ may be calculated as,

V
β̂
= Z′V−1 Z;

where V is a diagonal matrix with elements, vii= µ̂i(1− µ̂i). These
variance estimators are approximations based on second-order Taylor
series expansions and, depending on the degree of model misspeci-
fication, may be biased.

3.2. Probability-based estimators

Properties of probability-based estimators derive from the prob-
abilities of selection of population units into the sample, thus the
characterization of these estimators as probability-based (Hansen
et al., 1983). Although probability-based inference is also character-
ized as design-based inference, the term design is not well-defined
in the sense that it may refer simply to the selection of population
units into the sample or additionally to the entire inferential process
(Kendall & Buckland, 1982). Further, depending on the application,
valid inferences do not necessarily require sampling designs with
probabilistic components (Gregoire, 1998).

Probability-based inference is based on three assumptions: (1)
population units are selected for the sample using a probability-based
randomization scheme; (2) the probability of selection for each
population unit is positive and is either known or can be estimated;
and (3) the observation of the response variable for each population
unit is a constant. Estimators are derived to correspond to sampling
designs and typically are unbiased, meaning that the expectation of
the estimator, µ̂, over all samples that could be obtained with the
sampling design is the population parameter; i.e., E(µ̂) =µ. However,
the estimate obtained with any particular sample may deviate
considerably from the true value of the population parameter.
3.2.1. Simple random sampling estimator
For simple random sampling (SRS) designs, the simplest approach

to probability-based inference for mean proportion forest, m, is to use
the familiar SRS estimators,

μ̂SRS =
1
n
∑
n

i=1
yi ð4Þ

and

Vârðμ̂SRSÞ =
∑
n

i=1
yi−μ̂SRS
� �2
nðn−1Þ ; ð5Þ

where i indexes the n sample observations and yi is the observation for
the ith population unit. The primary advantages of the SRS estimators
are that they are intuitive, simple, and unbiased when used with an
SRS design; the disadvantage is that variances are frequently large,
particularly for small sample sizes. Although the variance estimator
(Eq. 5) may be biased when used with systematic sampling, it is
conservative in the sense that it over-estimates the variance (Särndal
et al., 1992). In addition, for this study, finite population correction
factors are ignored because of the small sampling intensity, one 168-m2

plot per 1200 ha of land area.

3.2.2. Stratified estimator
For areal estimation, the stratified estimator can use a map in the

form of either categorical or continuous predictions for satellite image
pixels to increase the precision of estimates and thereby enhance the
inference (McRoberts et al., 2002a,b, 2006). However, because the
validity of the inference is still based on probabilities of selection of
population units into the sample, and observations are still assumed
to be constant for each population unit, inferences obtained using
the stratified estimator are characterized as probability-based. The
essence of stratified estimation is to assign sampled population units
to groups or strata, calculate within stratum sample means and
variances, and then calculate aweighted average of thewithin stratum
estimates where the weights are proportional to the stratum sizes.
If the stratification is effective, the stratified variance estimate will
be less than the SRS variance estimate. Of considerable importance,
stratified approaches to estimation may produce reductions in vari-
ances evenwhen stratified sampling is not used, such as the casewhen
all sampling units are established in permanent locations.

Stratified estimation requires accomplishment of two tasks: (1)
calculation of the stratum weights as the relative proportions of the
population area corresponding to strata, and (2) assignment of
sample units to a single stratum. The first task is accomplished by
calculating the stratum weights as proportions of population units
(pixels) in strata. The second task is accomplished for this study by
assigning the central FIA subplots to strata on the basis of the stratum
assignments of the population units (pixels) containing the subplot
centers. Stratified estimates are calculated using methods described
by Cochran (1977):

μ̂Str = ∑
H

h=1
whμ̂h; ð6Þ

and

Vâr μ̂Str
� �

= ∑
H

h=1
w2

h
σ̂

2
h

nh
; ð7Þ

where

μ̂h =
1
nh

∑
nh

i=1
yhi;

σ̂2
h =

1
nh−1

∑
nh

i=1
yhi−μ̂h

� �2
;
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h=1,…,H denotes strata; yhi is the ith observation in the hth stratum;
wh is the weight for the hth stratum; nh is the number of subplots
assigned to the hth stratum; µ̂h and σ̂h

2 are the sample estimates of the
within stratum mean and variance, respectively; and Str denotes the
stratified estimator. As for the SRS variance estimators, these stratified
variance estimators are biased when used with systematic sampling,
but again they produce conservative estimates. Also, as for the SRS
variance estimators, finite population correction factors are ignored
because of the small sampling intensity.

Stratified estimation is effective in increasing precision when the
variables on which the stratification is based are closely related to the
estimation variable, when sample units can be accurately registered
to the stratification, when the dates of the sample observations and
the imagery underlying the stratification are similar, and when
misclassification errors in the underlying classification are minimal
(McRoberts et al., 2006). Although misclassification errors affect the
utility of the stratification for increasing precision, they do not con-
tribute to bias in the estimator.

3.2.3. Model-assisted, difference estimator
Model-assisted estimators use models based on ancillary data to

enhance inferences but rely on the probability sample for validity. A
naïve model-assisted estimator, µ̂naive, of mean proportion forest is
the mean over all population units of sample observations where they
are available and model predictions where observations are not
available:

μ̂naive =
1
N

∑
n

i=1
yi + ∑

N

i=n+1
ŷi

 !
ð8Þ

where, without loss of generality, the population units are indexed so
that i=1, 2,…, n denotes the population units selected for the sample,
and i=n+1, n+2,…,N denotes the population units not selected for
the sample. In addition, the notation ŷi is used instead of µ̂i because
for probability-based approaches the model predicts the constant
value for a population unit rather than the mean of observations for
the same combination of values for the model independent variables.
The expectation of µ̂naive is,

E μ̂naive
� �

= E
1
N

∑
n

i=1
yi + ∑

N

i=n+1
ŷi

 !" #

= E
1
N

∑
N

i=1
yi

 !
+ E

1
N

∑
N

i=n+1
ŷi−yi
� �" #

= μ + Bias μ̂naive
� �

;

where the bias may be estimated as,

B̂iasðμ̂naiveÞ =
1
n
∑
n

i=1
ŷi−yi
� �

: ð9Þ

Therefore, the model-assisted difference (Dif) estimator (Baffetta et
al., 2009; Särndal et al., 1992, pp. 221-225) is defined as the difference
between the naïve estimator (Eq. 8) and its bias estimator (Eq. 9),

μ̂Dif =
1
N

∑
n

i=1
yi + ∑

N

i=n+1
ŷi

 !
−1

n
∑
n

i=1
ŷi−yi
� �

;

which can be approximated as,

μ̂Dif =
1
N

∑
N

i=1
ŷi−

1
n
∑
n

i=1
ŷi−yi
� �

; ð10Þ
(Appendix A) with variance that can be approximated as,

Vâr μ̂Dif
� �

=
1

nðn−1Þ ∑
n

i=1
ŷi−yi
� �2

; ð11Þ

(Appendix B).
The primary advantage of model-assisted estimators is that they

capitalize on the relationship between the sample observations and
their model predictions to reduce the variance of the population
parameter estimate. In this regard, they are potentially preferable
to the stratified estimator because they use the actual predictions
whereas the stratified estimator aggregates the predictions into a
small number of classes or strata. However, as with all probability-
based estimators, model-assisted estimators suffer the effects of small
sample sizes when used for small area estimation.

3.3. Model-based inference

The assumptions underlying model-based inference differ consid-
erably from the assumptions underlying probability-based inference.
First, the observation for a population unit is a random variable whose
value is considered a realization from a distribution of possible values,
rather than a constant as is the case for probability-based inference.
The conceptual framework with a distribution of possible values for
each unit in a finite population is characterized as a superpopulation,
and model-based inference is occasionally characterized as super-
population inference (Graubard & Korn, 2002). Second, the basis for a
model-based inference is themodel, not the probabilistic nature of the
sample as is the case for probability-based inference. In fact, purposive,
non-probability samples may produce entirely valid model-based
inferences. For example, the sample may be selected to maximize the
precision of the model parameter estimates or the precision of model
predictions. However, a probability sample providesmodest assurance
that the ranges of values of independent variables in the sample data
are similar to the ranges in the population to which the model is
applied. Randomization for probability-based inference enters
through the random selection of population units into the sample,
whereas randomization for model-based inference enters through the
random realizations from the distributions for population units.

Current approaches to model-based inference originated in the
context of survey sampling and can be attributed to Mátern (1960),
Brewer (1963), and Royall (1970). Given the origins of model-based
inference in survey sampling, it is not surprising that forestry
applications have often been in the context of forest inventory
(Rennolls, 1982; Gregoire, 1998; Kangas &Maltamo, 2006; Mandallaz,
2008). An important aspect of themodel-based approach is that when
the model is correct, the estimator is unbiased (Lohr, 1999); however,
when the model is misspecified, the adverse effects on inference may
be substantial (Hansen et al., 1983; Royall & Herson, 1973). Thus,
much of the reported research on model-based inference has focused
on selection of sampling designs and estimators that are robust to
model misspecification, particularly for linear models (Chambers,
2003; Valliant et al., 2000). Despite a few examples for nonlinear
models such as Valliant (1985), considerable work remains when the
models are nonlinear (Valliant et al., 2000).

In the context of model-based inference, the mean and standard
deviation of the distribution of Y for the ith population unit may be
denoted μi and σi, respectively. Thus, an observation of Y for the ith
unit is expressed as,

yi = μi + εi;

where εi is the random deviation of the observation, yi, from its mean,
μi, which is expressed mathematically as,

μi = f ðXi;βÞ:



1021R.E. McRoberts / Remote Sensing of Environment 114 (2010) 1017–1025
The model,

yi = f ðXi;βÞ + εi;

is fit to the sample data where Xi is the vector of ancillary variables for
the ith population unit, β is a vector of parameters to be estimated,
and εi is the random residual.

Two model-based estimators for the population parameter, μ,
mean proportion forest, may be considered. First, an estimator may
be based on the set of estimates {µ̂i, i=1, 2,...,N} of the means for
individual population units,

μ̂Mod =
1
N

∑
N

i=1
μ̂ i =

1
N

∑
N

i=1
f Xi; β̂
� �

: ð12Þ

Second, an estimator may be based on the set of predictions, {ŷi,
i=1, 2,..,N}, of random realizations,

ŷ
P

Mod =
1
N

∑
N

i=1
ŷi =

1
N

∑
N

i=1
f Xi; β̂
� �

: ð13Þ

Both estimators produce the same estimate, because the best
prediction of an observation from the distribution for a population
unit is the mean of the distribution. However,

Vârðμ̂ModÞ =
1
N2 ∑

N

i=1
∑
N

j=1
Côv μ̂i; μ̂j

� �
; ð14Þ

whereas,

Vârð ŷ
P

ModÞ =
1
N2 ∑

N

i=1
∑
N

j=1
Côv μ̂i + εi; μ̂j + εj

� �

=
1
N2 ∑

N

i=1
∑
N

j=1
Côvðμ̂ i; μ̂ jÞ +

1
N2 ∑

N

i=1
∑
N

j=1
Côvðεi; εjÞ

ð15Þ

under the assumption that the µ̂is and the εis are independent. In these
expressions, Vâr(µ̂i)=Côv(µ̂i, µ̂i) is the uncertainty of each pixel
estimate, µ̂i; Côv(µ̂i, µ̂j), i≠ j, reflects the fact that estimates for different
pixels are correlated because they are based on the same sample data;
and Côv(εi, εj) reflects the fact that the εs are correlated, likely in a
spatial manner. This spatial covariance may further be expressed as,

Covðεi; εjÞ = σiσjρij;

where ρij is the spatial correlation which is assumed to decrease
monotonicallywith respect to the distance between the ith and jth pixels.
Thus, for the binary logisticmodel, the second component of Eq. (15)may
be expressed as,

1
N2 ∑

N

i=1
∑
N

j=1
Côvðεi; εjÞ =

1
N2 ∑

N

i=1
∑
N

j=1
σ̂iσ̂jρ̂ij

b
0:25m

N
ð16Þ

where m is the number of population units over which ρij is non-
negligible, and max(σ̂iσ̂jρ̂ij)≤max(σ̂i

2)=max[µ̂i(1− µ̂i)]≤0.25. For
large N and

m
N

small, the quantity expressed by Eq. (16) becomes
negligible, whichmeans that Var(ȳ̂Mod)≈Var(µ̂Mod). Therefore, because
the estimators expressed by Eqs. (12) and (13) produce the same
estimate, and because the estimates obtained from Eqs. (14) and (15)
are the same for large N and small

m
N
, only µ̂Mod needs to be considered

for most applications. Based on variograms using data similar to those
used for this study, McRoberts (2006) estimated ranges of spatial
correlation to be on the order of 100–120 m which corresponds to
m≈50 and produce

m
N
b0:015 for an AOI of radius 1 km and

m
N
b0:0006
for an AOI of radius 5 km. McRoberts (2006) also reported precision
estimates based on both Eqs. (14) and (15), found the differences to be
negligible, but did not attribute the negligible differences to small

m
N
.

A disadvantage of model-based estimators is that calculation of
Vâr(µ̂Mod) using Eq. (14) is computationally intensive because of the
double summation and the large number of pixels for even relatively
small AOIs. For example, an AOI of radius 15 km includes centers
for approximately 7.85×105 TM pixels meaning that the number of
covariance calculations necessary for Eq. (14) is of the order of 1010.
However, Eq. (14) is just a two-dimensional mean over all units in
the AOI and can be approximated by sampling from AOIs. Using only
units (pixels) located at the intersections of an equally-spaced, two-
dimensional, perpendicular grid superimposed on the AOI,

Vârðμ̂ModÞ≈
1

n2
grid

∑
ngrid

i=1
∑
ngrid

j=1
Z′
i Vβ̂

Zj; ð17Þ

where ngrid is the number of grid lines in each dimension. For a grid
width of p pixels, the computational intensity necessary to calculate
Vâr(µ̂Mod) is reduced by a factor of approximately p2.

3.4. Analyses

All four estimators were used to calculate µ̂ and Vâr(µ̂) for AOIs of
radius 1 km, 2 km, …, 15 km centered at each of the 14 AOI center
points. In addition, all estimators were used to calculate µ̂ and Vâr(µ̂),
for the aggregation of the 14 AOIs of radius 1 km, 2 km, …, 15 km
centered at the 14 AOI center points.

For the stratifiedestimator, stratawere constructedusing the logistic
model pixel predictions, µ̂i, rounded to the nearest 0.01. Each pixel was
assigned to one of the resulting 101 categories, and the categories were
grouped into strata subject to two constraints: (1) categories grouped
into the same stratum must be adjacent; e.g., the 0.43 and 0.45 cate-
gories cannotbegrouped into the same stratumunless the0.44 category
is also included; and (2) each stratummust includeat leastfive subplots.
Stratifications featuring two, three, and four optimal strata were con-
structed by selecting strata boundaries tominimizeVâr(µ̂Str). Legitimate
concerns may be raised regarding violations of assumptions resulting
from using stratifications based on the sample observations to stratify
the same sample units from which the observations are obtained.
However, Breidt and Opsomer (2008) concluded that the practical
effects were minimal, even for relatively small sample sizes.

For the model-assisted estimator, the logistic model prediction, µ̂i,
of the probability of forest for the ith pixel was considered equivalent
to an estimate, ŷi, of proportion forest for the pixel.

For the model-based estimator, issues of bias and computational
intensity were investigated. Two approaches to bias assessment were
used. Because the issue of bias is closely linked to correct model
specification, the first approach focused on assessing the quality of fit
of the model to the data at the subplot/pixel level. If the model is
correctly specified, a graph of observations versus model predictions
for a continuous response variable should feature points that lie along
a line with intercept 0 and slope 1. However, because the data used to
estimate the model parameters are binary, a slightly modified three-
step approach was used: (1) all subplot observation/pixel model
prediction pairs, (yi, µ̂i), were ordered with respect to µ̂i; (2) the
ordered pairs were grouped into categories of equal numbers of pairs,
and the group means of the subplot observations and of the pixel
model predictions were calculated; and (3) a graph of the observation
means versus the model prediction means was constructed. As for
continuous variables, in the absence of model lack of fit a graph of the
points defined by the corresponding groupmeans of observations and
model predictions should be located along the 1:1 line and have
intercept of approximately 0 and slope of approximately 1.
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The second approach to bias assessment was areal. Estimates,
µ̂Mod, obtained using the model-based estimator were compared to
estimates, µ̂SRS, obtained using the simple random sampling estima-
tor. Estimates, µ̂Mod, that are consistently within approximately two
SRS standard errors of µ̂SRS, indicate no serious lack of model fit and
suggest unbiasedness of the estimator.

The effects of approximating Vâr(µ̂Mod) using a systematic grid were
assessed by comparing estimates of standard errors using all pixels in
AOIs to estimates obtained using pixels located at the intersections of
two-dimensional perpendicular grids of 2-, 5-, and 10-pixel widths.

4. Results and Discussion

4.1. Probability-based estimators

The SRS estimators yielded µ̂SRS=0.7516 and SE(µ̂SRS)=0.0159 for
the 14 AOIs of radius 15 km considered in aggregate. These estimates
served as the standard for comparison for the other three estimators.

For the stratified estimator, optimal stratifications were constructed
for the 14 AOIs of radius 15 km in aggregate and then applied to AOIs of
smaller radii individually. The stratifications using three and four strata
yielded little increase in precision over the stratificationwith two strata
(Table 1). These results are not surprising because few subplots were
not either completed forested or completely non-forested inwhich case
a reasonably accurate, simple forest/non-forest classification served as
an effective stratification. The utility of a stratification for increasing
precision is often evaluated using relative efficiency, calculated as,

RE =
Vâr μ̂SRS

� �
Vâr μ̂Str

� � ð18Þ

where values of RE greater than 1.0 indicate increasing effectiveness
of the stratification. For this study, the optimal stratification with two
strata produced RE=2.09, which can be interpreted as meaning that
the sample size would have to be increased by a factor of 2.09 to
achieve the same reduction in variance as the stratification achieves.
For forest inventory applications, the cost of more than doubling the
sampling size would be prohibitive; thus, RE=2.09 is of considerable
economic importance.

Estimates of variance obtained using themodel-assisted difference
estimator were similar to those obtained using the stratified esti-
mator. Although estimates obtained with the model-assisted estima-
tor would generally be expected to be smaller, for this study the result
can also be attributed to the fact that the subplot observations were
nearly all completely non-forested (y=0) or completely forested
(y=1). In particular, because the vast majority of subplots assigned
Table 1
Results for the stratified estimator.

Stratum Strata boundaries Number of subplots Weight Mean SE

Two strata
1 0.00–0.59 150 0.205 0.1444 0.0099
2 0.60–1.00 581 0.795 0.9083 0.0118
All 731 0.7485 0.0110

Three strata
1 0.00–0.59 150 0.205 0.1444 0.0099
2 0.60–0.91 259 0.354 0.8471 0.0078
3 0.92–1.00 322 0.440 0.9570 0.0022
All 731 0.7500 0.0108

Four strata
1 0.00–0.43 119 0.163 0.0963 0.0077
2 0.44–0.59 31 0.042 0.3290 0.0400
3 0.60–0.91 259 0.354 0.8479 0.0078
4 0.92–1.00 322 0.440 0.9570 0.0022
All 731 0.7486 0.0106
to a stratum are either non-forested or forested, within stratum
variances are small and therefore the stratified variance estimate is
small. Analogously, because the model predictions are close to the
sample observations, their squared differences are also small and
therefore the model-assisted variance estimate is also small. Finally,
because the stratifications are based on the samemodel predictions as
are used for the difference estimator, similar results are obtained.

Despite generally acceptable results with the model-assisted
estimator, a few undesirable results are noted, particularly for small
areas. Although bias estimates for the naïve model-assisted estimato
Eq. (9) tended to be small for individual AOIs of radius 15 km, ranging
from −0.19 to 0.02, the estimates were considerably larger for
individual AOIs of radius 5 km, ranging from −0.42 to 0.44. These
results can be attributed to small numbers of subplots per small AOI of
which a large proportion had poor model predictions. Occasionally,
the effects of subtracting the bias estimate (Eq. 9) from the naïve
estimate (Eq. 8) were estimates of mean proportion forest for small
AOIs greater than 1.0 (Table 2). In addition, all these results must be
considered somewhat optimistic because the same data were used to
estimate bias as were used to estimate the model parameters.

4.2. Model-based estimator

Two approaches to bias assessment for the model-based estimator
were used, one at the pixel level that focused on quality of fit of the
model to the data and one at the areal level that focused on comparisons
of the SRS and model-based estimates. As for the model-assisted
estimator, these assessments may be optimistic because the same data
were used for these assessments as were used to estimate the model
parameters.

At the pixel level, model predictions corresponding to non-forest
subplot observations were generally less than 0.1, although some
predictions were considerably larger; for forest observations, predic-
tions were generally greater than 0.8, although some were smaller.
Multiple factors may lead to deviations between observations and
predictions that contribute to model lack of fit. First, tree density on
forest subplots varies considerably, even though the entire subplot is
characterized as forest. Thus, completely forested subplots with
sparse tree cover may be predicted to have smaller probabilities of
forest than forested subplots with dense tree cover. Second, spectral
differences for subplots with similar tree densities but different age
structures or health conditions may produce different estimates of
the probability of forest. Third, subplots with tree cover may be
characterized as non-forest if the minimum FIA requirements of a 0.4-
ha patch with 36.58-m width and 10% stocking are not satisfied.
Fourth, the observation for the smaller subplot may not adequately
characterize the larger pixel. Fifth, additional factors such as
misregistration between subplot locations and the satellite imagery
and subplot disturbance between the subplot observation and image
acquisition dates are also possible.

Despite a few large deviations between subplot observations and
their corresponding model predictions, the graph of means of central
subplot observations versus corresponding means of pixel predictions
for the ordered groups suggested no serious lack of model fit. Most
pairs of observation and prediction means were located relatively
close to the 1:1 line with intercept 0 and slope 1 (Fig. 2). A simple
linear regression produced intercept and slope estimates of −0.0020
and 1.0008, respectively.

The second assessment was areal and was based on a comparison
of µ̂Mod and µ̂SRS; µ̂Mod was not compared to µ̂Str or µ̂Dif because of
the potential confounding effects of incorporating the same model
predictions into both estimators. The rationale for comparing µ̂Mod

and µ̂SRS is that if

μ̂SRS−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂SRS

� �r
≤ μ̂Mod ≤ μ̂SRS + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vâr μ̂SRS

� �r
; ð19Þ



Table 2
Estimates for individual AOIs of small radii.

AOI Radius=2 km Radius=3 km Radius=4 km Radius=5 km

n SRS Dif Mod n SRS Dif Mod n SRS Dif Mod n SRS Dif Mod

1 2 1.0000 0.9466 0.8973 2 1.0000 0.9499 0.9006 4 1.0000 0.9390 0.8948 5 1.0000 1.0291 0.8990
2 1 1.0000 0.8782 0.8666 3 0.5133 0.4247 0.8449 3 0.5133 0.4074 0.8276 5 0.5080 0.6175 0.8135
3 0 – – 0.6127 2 1.0000 0.6767 0.6346 4 0.7500 0.6607 0.6325 5 0.6000 0.6744 0.6518
4 0 – – 0.8544 0 – – 0.8779 4 1.0000 0.9175 0.8834 5 1.0000 0.9189 0.8888
5 1 1.0000 0.7550 0.4613 3 0.6667 0.4497 0.4995 4 0.5000 0.4529 0.5346 4 0.5000 0.4357 0.5173
6 2 1.0000 0.9642 0.8871 3 1.0000 0.9460 0.8869 3 1.0000 0.9309 0.8718 6 1.0000 0.8859 0.8381
7 0 – – 0.6872 3 0.6667 0.8430 0.7207 5 0.8000 0.8165 0.7126 6 0.8333 0.8153 0.7124
8 2 0.0000 – 0.6319 2 0.0000 0.6637 0.6637 3 0.0000 0.4720 0.6741 6 0.1667 0.4491 0.6799
9 1 0.0000 0.2521 0.5912 1 0.0000 0.2906 0.6298 4 0.2500 0.4152 0.6431 7 0.2857 0.4108 0.6566
10 1 1.0000 1.4631 0.6333 3 0.6667 0.9313 0.6454 5 0.8000 0.9822 0.6524 8 0.7500 0.7936 0.6503
11 2 1.0000 0.9208 0.8706 2 1.0000 0.8415 0.7913 5 0.8000 0.7313 0.7890 8 0.7500 0.6793 0.7925
12 2 1.0000 1.1140 0.6758 2 1.0000 1.0759 0.6377 2 1.0000 1.0365 0.5984 4 0.7500 0.8416 0.5881
13 1 1.0000 0.8503 0.8401 2 1.0000 0.8792 0.8622 4 1.0000 0.8910 0.8730 5 1.0000 0.9285 0.8801
14 0 – – 0.8393 2 0.5000 0.4326 0.8311 3 0.6667 0.5639 0.8088 5 0.8000 0.6855 0.8024
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then an argument can be made that µ̂Mod and µ̂SRS are not statistically
significantly different. Further, the test criterion is conservative in the
sense that no account is made for the uncertainty in µM̂od. Although a
naïve approach would be to combine Vâr(µ̂SRS) and Vâr(µ̂Mod) in the
criterion, the two variance estimators are based on such different
underlying assumptions that the proper approach to combining them
is not apparent. The comparisons indicated that the criterion
expressed by Eq. (19) is generally satisfied (Fig. 3). Similar results
were obtained by McRoberts (2006) using different sets of AOIs of
different sizes.

The effects of using data for a two-dimensional, equally-spaced,
perpendicular grid to estimate Vâr(µ̂Mod) were evaluated for grid
widths of 2, 5, and 10 pixels. Differences in the variance estimates
were extremely small, even for AOIs with small radii, and were not
disproportionately positive or negative (Table 3). For a grid width of
10 pixels, use of the grid reduces the computational intensity by a
factor of 100 and makes estimation of model-based variances feasible
for many applications, particularly small area applications.

Finally, although increases in sample sizes produced corresponding
decreases in Vâr(µ̂SRS), Vâr(µ̂Str), and Vâr(µ̂Dif), such was not generally
the case for Vâr(µ̂Mod) (Table 3). This somewhat counter intuitive
phenomenon can be attributed to the fact that µ̂Mod is a synthetic
estimator in the sense that the sample observations used to estimate
the model parameters and their covariance matrix come from the
Fig. 2. Group means of central FIA subplot observations versus group means of
predictions for pixels containing subplot centers for the 2232 subplots in the study
area; group size=30.
entire study area, not just the AOIs. Thus, because Vβ̂ is the primary
factor in determining Vâr(µ̂Mod), and because Vβ̂ does not change for
individual AOIs, regardless of their sizes, Vâr(µ̂Mod) remains nearly
constant for AOIs of all sizes.

5. Conclusions

Four conclusions may be drawn from this study. First, all four
estimators produced similar estimates for mean proportion forest
for large AOIs, although only the model-based estimator produced
consistently reliable estimates for small AOIs. For small areas, the
stratified estimator is less useful than the SRS and model-assisted
difference estimators because the former requires minimum numbers
of observations for each of multiple strata, not just for the entire
AOI. However, for small areas with small sample sizes, the model-
assisted difference estimator occasionally produced estimates beyond
the bounds of possible values. Second, use of the map in the form of
model predictions with the stratified and model-assisted difference
estimators enhanced inferences by producing meaningful variance
reductions. Third, bias for the model-based estimator was assessed
using two approaches, one based on a direct assessment of model lack
of fit and one based on comparing estimates obtained using the
model-based estimator and estimates obtained using the unbiased
SRS estimator. Neither approach indicated model misspecification or
bias in the estimator. Fourth, the grid sampling approach for
Fig. 3. Simple random sampling estimates versus model-based estimates for circular
AOIs of radius 15 km.



Table 3
Estimates for aggregations of 14 AOIs.

Radiusa

(km)
Area
(kmb)

Estimator

SRS Stratifiedb Difference Model-based

n Mean SE Number of strata Mean SE Mean Grid width (pixels)

2 3 4 1 2 5 10

Mean SE Mean SE Mean SE SE SE SE SE

1 43.98 3 0.3333 0.3333 c c c c c c 0.7184 0.1656 0.7544 0.0075 0.0073 0.0079 0.0072
2 175.93 15 0.8000 0.1069 0.8951 0.0428 c c c c 0.8749 0.0729 0.7392 0.0071 0.0070 0.0072 0.0063
3 395.84 30 0.7180 0.0818 0.7432 0.0647 0.7474 0.0601 0.7491 0.0604 0.7458 0.0667 0.7448 0.0070 0.0070 0.0071 0.0066
4 703.72 53 0.7272 0.0610 0.7539 0.0428 0.7312 0.0362 0.7299 0.0362 0.7349 0.0450 0.7426 0.0069 0.0069 0.0070 0.0067
5 1099.56 78 0.6992 0.0519 0.7260 0.0373 0.7139 0.0332 0.7153 0.0326 0.7188 0.0385 0.7408 0.0067 0.0067 0.0068 0.0066
6 1583.36 115 0.6569 0.0443 0.6935 0.0316 0.6939 0.0302 0.6974 0.0291 0.7033 0.0306 0.7450 d 0.0067 0.0068 0.0067
7 2155.13 158 0.7010 0.0361 0.7102 0.0262 0.7113 0.0256 0.7100 0.0239 0.7112 0.0254 0.7513 d 0.0068 0.0068 0.0068
8 2814.86 196 0.7192 0.0318 0.7309 0.0231 0.7295 0.0223 0.7241 0.0206 0.7250 0.0221 0.7556 d 0.0068 0.0069 0.0068
9 3562.56 256 0.7420 0.0272 0.7291 0.0200 0.7377 0.0198 0.7351 0.0201 0.7347 0.0193 0.7586 d 0.0069 0.0069 0.0070
10 4398.23 319 0.7542 0.0239 0.7396 0.0178 0.7384 0.0171 0.7388 0.0171 0.7405 0.0171 0.7584 d 0.0068 0.0069 0.0069
11 5321.85 393 0.7611 0.0213 0.7458 0.0152 0.7433 0.0148 0.7445 0.0148 0.7464 0.0146 0.7516 d d 0.0067 0.0067
12 6333.45 466 0.7500 0.0199 0.7462 0.0136 0.7466 0.0134 0.7464 0.0134 0.7459 0.0132 0.7569 d d 0.0067 0.0067
13 7433.00 554 0.7551 0.0181 0.7553 0.0127 0.7551 0.0122 0.7576 0.0120 0.7521 0.0121 0.7548 d d 0.0066 0.0066
14 8620.52 638 0.7542 0.0169 0.7560 0.0114 0.7587 0.0111 0.7575 0.0109 0.7547 0.0111 0.7548 d d 0.0066 0.0066
15 9896.01 731 0.7516 0.0159 0.7485 0.0110 0.7500 0.0108 0.7503 0.0106 0.7488 0.0108 0.7551 d d 0.0065 0.0065

a Radius of each of the 14 AOIs that are aggregated.
b Minimum of five plots per stratum.
c Estimates not calculated because of insufficient numbers of plots per stratum.
d Estimates not calculated because of computational intensity.
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calculating the variance of the model-based estimator produced
reductions in computational intensity by factors of 100 with no
apparent adverse effects on variance estimates. This result increases
the appeal of the model-based estimator and makes it much more
feasible for larger AOIs. Finally, although the nature of the data with
mostly completely non-forested or completely forested sample
observations is not unusual for relatively small inventory plots,
moderate caution should be exercised before extrapolating these
conclusions to markedly different data sets.
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� �
+

1
N

∑
N

i=1
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