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Cost-effective strategies are needed to find and remove diseased trees in forests damaged by pathogens. We
develop a model of cost-minimizing surveillance and control of forest pathogens across multiple sites where
there is uncertainty about the extent of the infestation in each site and when the goal is to minimize the
expected number of new infections. We allow for a heterogeneous landscape, where grid cells may be differ-
entiated by the number of trees, the expected number of infected trees, rates of infection growth, and costs of
surveillance and control. In our application to oak wilt in Anoka County, Minnesota, USA, we develop a cost
curve associated with saving healthy trees from infection. Assuming an annual infection growth rate of 8%, a
$1 million budget would save an expected 185 trees from infection for an average of $5400 per tree.
We investigate how more precise prior estimates of disease and reduced detection sensitivity affect model
performance. We evaluate rules of thumb, finding that prioritizing sites with high proportions of infected
trees is best. Our model provides practical guidance about the spatial allocation of surveillance and control
resources for well-studied forest pathogens when only modest information about their geographic distribution
is available.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Non-native fungal pathogens havewidespread effects on forests and
threaten many tree species. Chestnut blight (Cryphonectria parasitica)
virtually eliminated the American chestnut (Castanea dentata), and
now the Dutch elm disease fungus (Ophiostoma novo-ulmi) and the
oak wilt fungus (Ceratocystis fagacearum) are spreading in the eastern
United States (Hansen, 2008; Loo, 2009). For many forest pathogens,
managers do not know the extent of infection because the disease is dif-
ficult to detect (Meentemeyer et al., 2008). Further, an effective means
of controlling spread is prompt identification and removal of diseased
trees. Because budgets for surveillance and removal are typically limit-
ed,managersmust decide how to allocate those funds among sites with
different features. For example, should locations with low expected
numbers of infected trees be given priority since these locations can
more easily become disease-free, or should locations with low surveil-
lance costs be given precedence because more diseased trees can be
identified with the same budget? In addition, managers face a tradeoff
between surveillance and control activities. Greater spending for
surveillance enables managers to identify more infected trees, but
increased surveillance limits the budget remaining for removal of
diseased trees.
rights reserved.
Researchers use both simulation and optimization tools to evalu-
ate strategies for surveillance and control of non-native forest insects
and pathogens. Insights from these models depend on the underlying
assumptions about the invasion process and the decision-making
environment, which differ across studies. Simulation models include
detailed representations of the processes likely to affect insect or
pathogen spread, including human-mediated dispersal, and predict
the effectiveness of a few pre-defined surveillance and control strate-
gies (Harwood et al., 2011; Kovacs et al., 2011; Økland et al., 2010).
For example, Harwood et al. (2011) use a spatial-dynamic simulation
model to reconstruct an epidemic of a newly introduced Dutch elm
disease fungus, which swept through Great Britain in the 1970s and
killed the majority of mature elm trees (Ulmus spp.). They predict
the impact of proposed counterfactual policies of surveillance and
control at a national scale and conclude that more rapid and intense
efforts would not have prevented elm decline because of the scale
and density of the elm population nationwide. While simulation
models such as this include the spatial structure needed to predict
insect or pathogen spread, they are often difficult to parameterize
because of a limited understanding of the spatial processes. Further,
they are designed to examine the relative value of a predefined set
of policies rather than find the optimal policy.

Optimization models, in contrast, typically include the dynamics of
an infestation while simplifying or ignoring spatial structure. These
models determine the optimal timing and intensity of surveillance
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1 With the oak wilt pathogen, infective spore mats are produced under the bark of
dead trees in the spring after trees are killed by the pathogen. Only dead trees left
standing are a source of pathogen for new infections (Juzwik, 2009; Juzwik et al.,
2008).
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assuming that the timing of detection is uncertain and eradication or
suppression can be conducted only after the infestation is found
(Bogich et al., 2008; Homans and Horie, 2011; Mehta et al., 2007;
Ndeffo Mbah and Gilligan, 2010). The implications are that damage
caused by the infestation continues to occur during surveillance and
that older invasions are larger and more difficult to suppress or eradi-
cate. Higher intensities of surveillance enable earlier control and less
damage but costmore. This is a central tradeoff involved in determining
the optimal intensity of surveillance (Epanchin-Niell and Hastings,
2010).

Another type of dynamic optimization uses a partially observable
Markov decision process framework to select surveillance and control
activities when the level, observation, and dynamics of the infesta-
tion are uncertain and the objective is to minimize total discounted
costs (Haight and Polasky, 2010). In this framework, the decision
(e.g., monitor, treat, or do nothing) is conditional on the beliefs about
the level of infestation. The beliefs, in turn, are updated using the tran-
sition probabilities of the infestation, the observation probabilities
associated with the action, and the observations themselves. For
example, an optimal policy may be to choose no action when there
is a large probability of no infestation, monitoring alone with inter-
mediate probability values and treatment alone when the probabil-
ity of moderate or high infestation is large. While this framework
effectively models uncertainty about the level and dynamics of the
infestation, finding optimal policies is difficult and currently focuses
on single-site problems.

As noted in a recent review (Meentemeyer et al., 2012), researchers
are beginning to developmodels of optimal disease control in a dynam-
ic landscape. These models include spatial optimization models to allo-
cate detection effort over space. Detection effort is shown to be related
to species occurrence rates, potential damage, and surveillance costs,
which may vary across the landscape. Epanchin-Niell et al. (2012)
develop a dynamic model of pest colony establishment and growth
and design optimal long-term equilibrium surveillance programs to
minimize the total costs of surveillance and eradication. They use the
model to optimize long-term surveillance effort across heterogeneous
landscapes subject to region-wide surveillance budgets. Hauser and
McCarthy (2009) develop a static model to optimize one-time surveil-
lance effort across multiple sites when species' presence is uncertain
prior to detection and probability of occurrence varies across sites. In
contrast to the equilibrium analysis of Epanchin-Niell et al. (2012),
the static model of Hauser andMcCarthy (2009) is appropriate for opti-
mizing surveillance when many local populations are thought to have
established prior to the initiation of a surveillance program.

Similar to the model of Hauser and McCarthy (2009), we develop a
model to optimize one-time surveillance effort across multiple sites
except thatwe include uncertainty about the extent (rather than simply
the presence) of the infestation in each site.We handle this uncertainty
by splitting the management decision into two stages. In the first stage,
sites are selected for surveillance given their expected levels of infesta-
tion. In the second stage, treatments are prescribedwithin the surveyed
sites contingent on the levels of infestation found. The objective is to
minimize the expected growth of the infestation subject to the total
budget for surveillance and treatment. The model is a mixed-integer
linear program adapted fromSnyder et al. (2004)whodevelop a similar
model tomaximize the expected number of species represented in sites
selected for preservation.

We apply the model to a forested landscape in Anoka County,
Minnesota, where native oaks (Quercus spp.) are affected by the
non-native oak wilt fungus, and where the eradication or suppression
of the pathogen is possible only on the sites where surveillance is
conducted. We use the model to inform decisions about sites to select
for surveillance and removal of infected trees and provide informa-
tion about cost-efficient tradeoffs between detection and control ac-
tivities. Because prior information about the extent of infestation is
limited, we evaluate how the level of uncertainty about infestation
extent affects optimal strategies and estimates the value of gathering
more information. Because oak wilt diagnosis from direct tree inspec-
tion is difficult, we investigate how reduced detection sensitivity
affects the allocation of funds between surveillance and control. Final-
ly, we use the model to evaluate simple rules of thumb to choose sites
for surveillance.

2. Model Development

We develop a model of a forest management area composed of a
number of distinct sites. The manager's general goal is to control an
invasive pathogen in the management area, and the overarching
objective is to minimize the number of newly infected trees following
treatment. The choice variables are (1) a yes–no variable for each site
indicating whether surveillance is undertaken in the first stage, and
(2) the number of infected trees removed in each site in the second
stage. We have two constraints. First, the budget constraint ensures
that the total costs of surveillance and treatment do not exceed the
budget level. Second, we ensure that treatment cannot occur in a
given site unless the site has been surveyed; the number of trees re-
moved in each site is bounded above by the number of trees that
have been identified as infected. Broadcast treatments such as aerial
spraying are not an option for forest pathogens: treatments must be
applied to infected trees. Therefore, forest managers must know
which trees are infected before removing them. The second con-
straint is introduced to reflect this requirement.

Prior to conducting detailed surveillance, the forest manager has
some idea of the proportion of infected trees on each site. We consid-
er two characterizations of their information set: either they know
the exact proportion of infected trees on each site but not which spe-
cific trees are infected, or they do not know the exact proportion of
infected trees but have an estimate based on a small sample of trees
in each site. We first develop the model with a known proportion,
and then generalize by incorporating a distribution of possible infec-
tion proportions for each site that reflects the manager's uncertain
knowledge about this key piece of information.

2.1. A Forest Pathogen Growth Model

Our forest landscape is composed of distinct sites, each containingNj

host trees. A proportion, θj, of host trees in any given site j are infected
by an invasive pathogen. The number of infected trees (Ij) at the begin-
ning of the period can be written: Ij=θjNj. In the absence of manage-
ment, the number of newly infected host trees, Qj, is an increasing
function of the number of infected trees in the site: Qj=gjIj. The growth
rate for infected hosts (gj) may be site-specific because growth may
depend on characteristics such as tree density or soil type that vary
over the landscape. Managers can slow or stop infections by removing
infected trees. Therefore, the number of newly infected trees, Qj, on
site j is a function of howmany infected trees remain after themanager
removes Rj trees from the site1:

Qj ¼ gj Ij−Rj

� �
: ð1Þ

Any amount of removal will be effective in lowering the number of
newly infected trees.

It is important to note that the number of newly infected trees in
each site is independent of the number of infected trees in neighbor-
ing sites. We make this assumption because many tree pathogens,
including oak wilt, spread primarily via root transmission or insects
that travel short distances. It is possible to extend our model to
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allow for the long-distance spread of tree pathogens, such as by human
transport, by making the number of newly infected trees in a site
dependent on the numbers of infected trees and removals in surround-
ing sites. We leave that extension for further work.

2.2. A Management Model with Known Proportions of Infected Trees

The management area consists of J sites with a known number of
possible host trees, Nj, on each site, j=1, ⋯, J. The manager's objective
is to minimize the number of newly infected trees in the entire man-
agement area:

min∑J
j¼1Qj ¼ min∑J

j¼1gj Ij−Rj

� �
: ð2Þ

The manager has two sets of choice variables. The first is a set of
binary variables (Xj) indicating whether a site is inspected (Xj=1)
or not (Xj=0). The second is a set of continuous variables (Rj), the
number of infected trees removed in each site. The minimization is
subject to the constraint that tree removal can only occur in sites
that have been inspected, and the number of trees removed in a
given site is bounded between zero and the number of infected
trees that are detected:

0≤Rj≤IjXjγ: ð3Þ

The parameter γ is detection sensitivity, which is the probability that
an infected tree is actually detected (0≤γ≤1.0). The value of this pa-
rameter depends on sampling technology and methods and charac-
teristics of the pathogen and host.

The budget constraint is:

∑J
j¼1c1NjXj þ∑J

j¼1c2Rj≤B; ð4Þ

where c1 is the per-tree cost of surveillance in site j, c2 is the per-tree
cost of removal in site j, and B is the size of the budget. This budget
constraint reflects the notion that, once a site is selected for surveil-
lance, all trees in that site must be examined and evaluated for the
presence of the disease. The assumption of comprehensive surveil-
lance creates a fixed cost of site surveillance that is an increasing
function of the total number of trees on the site.

2.3. A Management Model When the Proportions of Infected Trees are
Unknown

2.3.1. Forming Beliefs about the Number of Infected Trees on Each Site
If the true proportion of infected trees in the population of trees in a

given site, θj, is known, the number of infected trees can be calculated as
the product of θj and the number of trees on that site, Nj. If this propor-
tion is not known, a forestmanager can estimate θj by inspecting a small
random sample of n trees on each site and finding the sample propor-
tion of infected trees, θ′ j, by dividing the number of infected trees, αj,
by the sample size so that θ′j ¼ αj=n. While the sample proportion pro-
vides information about the true proportion, the true proportion re-
mains unknown. However, the forest manager can formulate a belief
about the distribution of the true proportion of infected trees (θj)
based on the sample. This distribution translates into a belief about
the distribution of the number of infected trees in each site when the
parameter is multiplied by the number of trees on the site.

Bernoulli trials result in successes (1) or failures (0), according to
some underlying probability. In this context, a “success” is finding an
infected tree and a “failure” is finding a healthy tree. The beta distri-
bution characterizes the distribution of the true probability of success
(here, the true proportion of infected trees) based on the number of
successes and failures in a sample. In particular, the probability
density function of θj, defined over a compact interval [0,1], is charac-
terized by two site specific parameters αj (the number of infected
trees in a sample) and βj (the number of healthy trees in a sample):

f θj;αj;βj

� �
¼

Γ αj þ βj

� �

Γ αj

� �
Γ βj

� � θ
αj−1
j 1−θj

� �βj−1
: ð5Þ

Γ(⋅) is the probability density function of the gamma distribution. The

expected value of θj is
αj

αjþβj
, and the variance of θj is

αjβj

αjþβjð Þ2 αjþβjþ1ð Þ. In
this conception of the problem as a one period model, the manager for-
mulates a single belief about the distribution based on a single set of sam-
ples in each site. While this structure is amenable to a Bayesian updating
approach in which new information can be incorporated and new beliefs
formed, we confine ourselves to a single episode of belief formation.

2.3.2. Approximating Continuous Distributions with Sets of Discrete
Scenarios

After formulating beliefs about the distribution of the true propor-
tion of infected trees on each site j, a forest manager can approximate
the true distributions by generating a set of scenarios of infection
states in the management area. A scenario of infection in the manage-
ment area is a vector θ=(θ1, ⋯,θj, ⋯,θJ) of proportions of infected trees
in all J sites. Each element θj of the vector θ is randomly drawn from
[0,1] with the belief f(θj;αj,βj). A manager randomly and indepen-
dently draws S vectors to generate a set of S scenarios. Let θj(s) denote
the sth draw of θj for site j and θ=(θ1(s), ⋯, θj(s), ⋯, θJ(s)) denote the
sth scenario for all J sites. Together, the set of scenarios Θ=(θ(1), ⋯,
θ(s), ⋯, θ(s)) reflects a range of possible infection proportions in all J
sites according to the distribution characterized by site-specific pa-
rameters. We assume that the manager considers that each scenario
θ(s) is equally likely: θ(s) occurs with probability 1/S.

2.3.3. The Management Model
When the proportion of infected trees in each site is unknown,

and the manager formulates a belief about the proportion based on
a sample, the objective of the manager is to minimize the expected
number of newly infected trees. This expected number of newly
infected trees in the management area is the sum over S of the prod-
ucts of the realization of the random variable and their associated
probabilities. In this case, since each scenario is equally likely with
probability 1/S, the management problem becomes:

min
1
s
∑S

s¼1∑
J
j¼1Qj sð Þ:

As before, removal can only occur in sites that have been
inspected, and this has to be true for every scenario. Further, the
number of trees removed in a given site and scenario is bounded be-
tween zero and the number of infected trees that are detected. Final-
ly, the budget constraint must also hold for each scenario. Formally,
the manager solves the following problem by selecting sites to in-
spect (Xj) and the number of trees to remove in each site for each sce-
nario (Rj(s)) to solve the following problem:

min
1
s
∑S

s¼1∑
J
j¼1Qj Rj θ sð Þð Þ

� �
ð6Þ

subject to

0≤Rj θ sð Þð Þ≤Xjθj sð ÞNjγ;∀j ¼ 1; ⋯; J;∀s ¼ 1; ⋯; S; ð7Þ

∑J
j¼1c1XjNj þ∑J

j¼1c2Rj sð Þ≤B;∀s ¼ 1; ⋯; S;
Qj Rj θ sð Þð Þ

� �
¼ gj θj sð ÞNj−Rj θ sð Þð Þ

� �
;

ð8Þ
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∀j ¼ 1; ⋯; J;∀s ¼ 1; ⋯; S; and ð9Þ

Xj∈ 0;1f g;∀j ¼ 1; ⋯; J: ð10Þ

3. Application

We apply our model to the case of oak wilt in Anoka County,
Minnesota, a 1156 km2 county with 327,000 people (as of 2008) in
the Minneapolis–Saint Paul metropolitan region (Fig. 1). Oak wilt is
themost significant disease of oak trees in the eastern and central Unit-
ed States (Juzwik, 2009). Infection almost always causes mortality in
red oaks (Quercus spp., Section Lobate) and less frequently in white
oaks (Section Quercus). Anoka County was estimated to have 5.92 mil-
lion oak trees and 885 active oak wilt pockets covering 5.47 km2 in
2007 (Haight et al., 2011). Timely tree removal is the most common
management option for controlling oak wilt infestation. While other
treatment options exist, tree removal is the only management option
that simultaneously addresses the need to remove dead trees, often re-
quired bymunicipal ordinance (Kokotovich and Zeilinger, 2011), and to
prevent the infection of additional trees (Koch et al., 2010).

3.1. Defining Parameters for the Model

We chose to analyze a portion of Anoka County where oak wilt is a
particularly severe management problem. As shown in Fig. 1, the area
is in the northwest portion of the county, divided into 90 hexagonal
1.1 km2 grid cells. Our first step is to calculate the number of host
trees in each site. In a previous study of the economic damage of oak
wilt in Anoka County (Haight et al., 2011), we estimated oak density
in six primary land cover types of the Minnesota Land Cover Classifica-
tion System (Minnesota Department of Natural Resources, 2009): forest,
woodland, shrubland, herbaceous, cultivated vegetation, and artificial
surface. For this study, we overlaid a map of the primary cover type
polygons obtained from MLCCS database on the 90 sites and calculated
the area of each cover type in each site. Multiplying the density of oaks
in each cover type by the area in each cover type resulted in the number
of trees per cover type in each site. Summingover all cover types in a site
resulted in the total number of trees, Nj, for each site.

Next, we estimated the proportion of trees that are infected with
oak wilt in each site using information obtained from the ReLeaf data-
base, a statewide inventory of oak wilt pockets maintained by the
Fig. 1. Location of the study area within Anoka Co., MN, divided into 90 hexagonal 1.1 km2 gr
(c) percentage of all oak trees thatwere infectedwith oakwilt; and, (d) budget level required fo
in (a) had no trees with oak wilt infection and were not considered in subsequent analyses. Ce
Minnesota Department of Natural Resources (MN-DNR). The data-
base includes the location and size of each pocket, the year in which
the pocket was detected, whether the pocket was treated, and the
types of treatments applied. The database includes 4283 pockets in
Anoka County recorded from 1992 to 2007, and the boundaries of
the pockets are represented by polygons in a digital map. We chose
only active infection pockets reported in 2005, when the most intense
monitoring was conducted. Overlaying this information on the grid
cell layer, we calculated the fraction of each grid cell occupied by
the infected pockets. We subsequently used this proportion to repre-
sent the sample fraction of infected trees, θ′ j, in the computation of
the infection scenarios.

In areas where oak wilt is known to occur, foliar symptomsmay be
used to identify infected trees; however, laboratory testing may be
needed to provide an accurate diagnosis (reviewed in Juzwik et al.,
2011). Thus, infected trees may not be identified in the field with per-
fect certainty. Because the accuracy of oak wilt diagnoses from direct
tree inspections has not been formally evaluated, we performed sen-
sitivity analysis by varying the detection sensitivity parameter γ. In
the base case, we assume perfect detection (γ=1.0), and then we
look at the case where 80% of the infected trees are correctly identi-
fied (γ=0.8) to see how reduced detection sensitivity affects the al-
location of funds between surveillance and control.

There are two common means of oak wilt transmission between
trees: underground and overland spread (Juzwik, 2009). Root sys-
tems of related and adjacent oak trees are frequently grafted together,
and the disease can be transmitted underground through the root
grafts between diseased and healthy trees. This is the most common
transmission mechanism and is responsible for the characteristic
landscape pattern of oak wilt infection known as an infection center
or “pocket,” which expands in size over time. New pockets are
established when beetles (family Nitidulidae) feed on the fungal
mats of C. fagacearum, acquire spores, and move short distances to
trees that have been freshly wounded. This type of transmission is
known as “overland spread.”

Haight et al. (2011) developed amodel of oakwilt pocket expansion
and new pocket formation to simulate the progression of the disease
and estimate the number of infected trees over time in Anoka County.
To simplify their growthmodel, we assume an exponential rate of infec-
tion growthwithin eachhexagonal cell j, where the population of newly
infected trees equals the population of originally infected trees less
removals multiplied by the growth rate (gj) (Eq. (1)). To find growth
id cells, showing: (a) number of oaks infected with oak wilt; (b) number of healthy oaks;
r the optimizationmodel to select a cell for oakwilt inspection andmanagement. Two cells
lls in (d) are shaded from highest to lowest priority (dark–light).
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rates consistent with the literature, we take the number of infected
trees in Anoka County at the beginning of the period and the number
of infected trees after a 10 year period from the oak wilt growth
model in Haight et al., 2011 (Table 3a, third row, 2.42 m/yr radial
growth rate). We then use the formula [ln(N10/N0)]/10 to compute
the implied exponential growth rate 8%. We assume a constant growth
rate in our application even though our optimization model allows for
site-specific growth rates because we lacked information about how
growth rates might vary across sites in our study area.

We calculate the surveillance cost, c1, from the wage rate of arbor-
ists employed by city and county governments. Arborists employed
by governments tend to be ranked in GS6 or 7 in the General Schedule
(GS) Locality Pay Table. Taking the average of means of salaries for
GS6 and GS7, we calculate the salary for an arborist to be 17.03 dollars
per hour. To diagnose whether a tree is diseased or not takes 10 min
on average. Thus, surveillance cost per tree results in 2.84 dollars
(17.03 dollars×1/6). We assume that the surveillance cost per tree
is uniform over all the sites. The per-tree cost of removal, c2, usually
depends on both the location and the size of a tree. Larger trees cost
more to be removed. On average, trees in Anoka County are 26.6 cm
diameter at breast height (dbh). We use this average value for all
trees removed so that the per-tree cost of removal is assumed to be
360 dollars as a benchmark value.

Finally, we prepared a set of 2000 scenarios, Θs=(θ1(s), ⋯, θj(s), ⋯,
θ90(s))s=1

2000. Using a sample size (nj) of 0.009* Nj and the fraction of
infected trees θ′ j calculated above, we computed the parameters for
the beta distribution f(θj;αj,βj) for each site j=1, ⋯, 90, where αj ¼
njθ

′
j and βj ¼ nj 1−θ′j

� �
. Using Matlab (MathWorks, 2009), we drew

θj from an interval [0,1] following f(θj;αj,βj) 2000 times for each site
j. For each draw s=1, ⋯, 2000, we obtained a vector of scenarios
θ(s)=(θ1(s), ⋯, θj(s), ⋯, θ90(s)). Collecting these 2000 scenario vectors,
we obtained the set of scenarios Θ. We selected 2000 scenarios be-
cause we found that solving the problem with different sets of 2000
scenarios did not affect the optimal solution or objective function
value. When we solved the problem with sets containing fewer sce-
narios, we found some variation in the optimal solutions.

The problem specified in Eqs. (6)–(10) was solved by using the inte-
grated solution package GAMS (GAMS Development Corporation,
1990), which is designed for large and complex linear and mixed integer
programming problems. The termination criterion for the optimization
runs is a combination of time limit and optimality: the solver is instructed
to stop and report the solution after 4 h of runtime or when the relative
gap is less than 0.005, whichever happens first. All of the solutions had
relative gaps less than 0.005 in less than 4 h of runtime on a Lenovo
T60 laptop computer with an Intel Core 2 central processing unit.

3.2. Results

3.2.1. Distribution of Oaks and Oak Wilt Infection
The study area contains 194,798 healthy oaks (20 trees ha−1)

with most cells having 13–27 trees ha−1 (Fig. 1b). There are 4853
infected oaks (0.5 infected trees ha−1) in the study area with most
cells having fewer than 100 infected trees (b1 infected tree ha−1)
(Fig. 1a). The proportion of infected oaks per cell varies from 0 to
10%. Cells with the highest proportions of infected oaks are located
in on the northern, western and eastern edges of the study area
(Fig. 1c).

3.2.2. Total Costs and Surveillance Costs
We solved the optimization model for 25 different budget levels

from $100,000 to $2,500,000 in $100,000 increments and mapped
the locations of cells that are selected for inspection under the differ-
ent budgets (Fig. 1b). We found that once a cell is selected for inspec-
tion, it is also selected at all higher budget levels. Cells selected at the
lower budget levels (b$1,000,000) are concentrated in the northern,
western, and eastern edges of the study area and correspond fairly
well to cells with the highest proportions of infected trees (Fig. 1c).

We computed the expected percentage of healthy trees saved
from infection for each budget level, and show these results in a
cost curve (Fig. 2). We find that the slope of the cost curve increases
as the fraction of healthy trees saved from infection increases. Note
that the surveillance cost curve flattens several times. This is because
saving more healthy trees from infection does not necessarily mean
surveying more sites. It is optimal for a forest manager not to survey
more sites until she removes all the infected trees on sites already
surveyed. We find that the marginal cost of saving trees from infec-
tion rises with more trees saved. The intuition for this result is that
the lower priority cells have many trees to inspect and few infected
trees to find. The cost of preventing a small number of infections is
high because of the high surveillance cost in those cells. Optimized
surveillance costs comprise between 13% and 22% of the total cost
of surveillance and treatment. Note also that the cost of saving trees
from infection is quite high. For instance, it would cost $1 million to
save approximately 50% of potentially infected trees in one 99 km2

area in one county.
To find what might be gained by detecting the pathogen when it is

treated at amuch earlier stage, we performed the same analysis assum-
ing that the fraction of infected treeswasmuch smaller: 1/100 of its size
in 2005. Results of this analysis are shown in Fig. 3. As expected, it is
much cheaper to control any given expected percentage of infected
trees. However, the fraction of the budget spent on surveillance is
much higher – in the 70% range – because there aremanymore healthy
trees to inspect per diseased tree detected.

3.2.3. Rules of Thumb for Selecting Sites for Surveillance
Without recourse to an optimization model, how might a forest

manager achieve a high degree of success in limiting the spread of a
pathogen? Possible rules of thumb might include: (1) choosing sites
with the highest expected number of infected trees; (2) choosing
sites with the highest expected proportion of infected trees; and
(3) choosing sites with the highest expected number of healthy
trees to be saved. The first rule is plausible because the pathogen
grows exponentially, and surveillance of sites with large numbers of
infected trees would allow for removal of a large source of infection.
The second rule is plausible because inspection of a site could identify
a large number of infected trees relative to the number of trees
inspected. The third rule may be reasonable as a way to protect
many healthy trees. Our approach to learning how successful these
rules might be was to rank sites according to these three plausible
criteria, as well as random selection of sites, and specify the sites to
be inspected with limited budgets. After constraining the model so
that these sites – and only these sites – were inspected, we ran the
optimization model and found the expected percentage of potentially
infected trees saved from infection for four budget levels. Results,
with the original fraction of infected trees, are shown in Table 1.
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Table 1 shows that the rules of thumb perform well relative to the
optimization, but that selecting sites at random is a poor strategy. The
second rule – selecting sites based on the expected proportion of
trees infected – matches the optimization fairly well. However, as
Table 1 shows, unless all the sites are inspected, there is still a penalty
in terms of a loss in performance if a rule of thumb is used instead of
the optimization. For example, with a $1,000,000 expenditure, 48.29%
of trees are saved using the optimization, while 46.48% and 47.12%
are saved using the rules of thumb. Only 40.36% are saved using
random surveillance. The worst strategy is to choose sites based on
the expected number of healthy trees. This rule of thumb performs
worse than random selection, with 39.01% of trees saved. Fig. 1 illus-
trates these results in a map of the study area, showing that ranking
sites by the percent infected (Fig. 1c) is the closest to the optimal
selection of sites for surveillance (Fig. 1d).

Interestingly, optimal surveillance often leads to higher surveil-
lance costs than the first two rules of thumb for achieving a given
targeted expected percentage of trees saved. Surveillance may be ex-
pensive, but when sites are optimally chosen, surveillance is worth
the cost because it leads to more effective removal. However, spend-
ing resources on surveillance may be wasteful in comparison with the
optimal solution: both the third rule of thumb and random site sur-
veillance lead to higher than optimal surveillance costs. Selecting
sites with high numbers of healthy trees leads to inspecting sites
with high surveillance costs and relatively few infected trees; the
Table 1
Rule of thumb results. Differences from the optimized results are shown in parentheses.

Budget Optimized Rule:
expected #
of infected
trees

Rule: expected
proportion of
infected trees

Rule:
expected #
of healthy
trees

Random
selection
of sites

Expected % of trees saved
$ 500,000 24.9% 23.7%

(−1.2%)
24.1%

(−0.8%)
18.0%

(−6.9%)
21.3%

(−3.6%)
$1,000,000 48.3% 46.5%

(−1.8%)
47.1%

(−1.2%)
39.0%

(−9.3%)
40.4%

(7.9%)
$1,500,000 69.2% 68.0%

(−1.2%)
68.5%

(−0.6%)
59.0%

(−10.2%)
62.5%

(6.7%)
$2,000,000 87.8% 87.4%

(−0.4%)
87.5%

(−0.3%)
78.5%

(9.3%)
82.8%

(5.0%)

Search cost
$ 500,000 $ 61,223 $52,259

(−$8964)
$50,016

(−$11,207)
$144,679
($83,456)

$90,184
($28,962)

$1,000,000 $146,755 $130,741
(−$16,014)

$121,187
(−$25,565)

$260,649
($113,894)

$238,302
($91,547)

$1,500,000 $269,261 $244,514
(−$24,747)

$241,355
(−$27,905)

$403,889
($134,628)

$334,209
($64,949)

$2,000,000 $418,792 $394,447
(−$24,345)

$394,972
(−$23,819)

$456,295
($37,504)

$480,324
($61,533)
number of infected trees found per dollar spent on surveillance was
low with this strategy.

The rules of thumb assume, of course, that the required information
is already available. We have not attempted to incorporate the costs of
acquiring this information. However, to make the rules worthwhile,
the marginal costs to gather this information would need to be less
than or equal to the marginal benefits of applying the rule of thumb
rather than selecting sites randomly.

3.2.4. Increased Sampling
These results are based on the assumption that 0.9% of trees are

sampled before the surveillance-treatment phase in order to formu-
late beliefs about the expected proportion of trees infected. To assess
whether increased pre-optimization sampling would improve perfor-
mance, we repeated our analysis assuming that 9% of trees are sam-
pled, an assumption equivalent to the original estimates of αj and βi

being 10-fold greater. This assumption does not affect the expected
value of θj but reduces the variance by approximately 10%. Results
are reported in Table 2.

More precise estimates of infection do improve the performance
of the optimization model: the expected number of trees saved in-
creases with the increase in sampling. In general, the more precise es-
timate of θj improves the odds of selecting cells that truly have a
greater proportion of infected trees for surveillance. This improve-
ment, in turn, lowers the search cost to find infected trees, leaving
more of the budget for tree removal. However, at low budget levels,
an increase in the amount of sampling has little effect on the expected
number of trees saved. At high budget levels, additional information
is more beneficial. For example, at a $1.5 million budget level, in-
creasing sampling costing $46,000 (sampling an additional 16,197
trees) yields an additional 11.37 more trees saved. This is a wiser
way to spend additional funds than spending it on surveillance and
control in the optimization phase, since spending $46,000 there
yields 7 additional trees saved (calculated by optimizing the model
with a budget of $1,546,000). These calculations assume that the
per-tree cost of identifying infected trees is the same in the sampling
phase and in the surveillance phase ($2.84/tree).

3.2.5. Reduced Detection Sensitivity
The results in the base case assume that infected trees are

detected with certainty (γ=1.0). When the detection sensitivity pa-
rameter is reduced to 0.8, the performance of the optimal solutions is
reduced: the expected number of trees saved decreases with the de-
crease in detection sensitivity (Table 3). In general, lower detection
sensitivity reduces the number of infected trees that are identified
and removed in the sites selected for surveillance. In response, more
funds are allocated to surveillance and the number of sites surveyed
increases. For example, with a budget of $1 million, $180,269 is
used to survey 30 sites when γ=0.8 compared with $146,755 to
Table 2
Results with increased pre-optimization sampling. Differences between high and low
sampling are shown in parentheses.

Low Sampling High Sampling

Budget Expected
% of
saved
trees

Expected
# of
saved
trees

Search
cost

Expected
% of
saved
trees

Expected
# of
saved
trees

Search
cost

$500,000 24.9% 95.1 $61,223 25.5%
(+0.6%)

98.7
(+3.6)

$ 55,597
(−$5626)

$1,000,000 48.3% 184.7 $146,755 49.7%
(+1.4%)

192.7
(+8.0)

$126,447
(−$20,308)

$1,500,000 69.2% 265.1 $269,261 71.3%
(+2.1%)

276.5
(+11.4)

$245,140
(−$24,121)

$2,000,000 87.8% 337.1 $418,792 90.6%
(+2.8%)

351.3
(+14.9)

$394,972
(−$23,819)



Table 3
Results with decreased disease detection sensitivity. Differences between low and high
detection sensitivity are shown in parentheses.

Budget High detection sensitivity
(γ=1.0)

Low detection sensitivity
(γ=0.8)

Expected
% of
saved
trees

Expected
# of
saved
trees

Search
cost

Expected
% of
saved
trees

Expected
# of
saved
trees

Search cost

$500,000 24.9% 95.1 $61,223 24.0%
(−0.9%)

91.8
(−3.3)

$ 77,450
(+$16,227)

$1,000,000 48.3% 184.7 $146,755 45.5%
(−2.8%)

174.7
(−10.0)

$180,269
(+$33,514)

$1,500,000 69.2% 265.1 $269,261 64.2%
(−5.0%)

246.7
(−18.4)

$341,878
(+$72,617)

$2,000,000 87.8% 337.1 $418,792 77.2%
(−10.6%)

299.4
(−37.7)

$506,523
(+$87,731)

84 T. Horie et al. / Ecological Economics 86 (2013) 78–85
survey 25 sites selected when γ=1.0. We also note that reducing the
detection sensitivity uniformly across sites does not affect the order
in which the sites are selected for surveillance. For example, the 30
sites selected for surveillance with a $1 million budget when γ=0.8
include the 25 sites selected for surveillance when γ=1.0.

3.2.6. Infected Tree Removal
It is optimal for a forest manager to exhaust her budget left after

surveillance by cutting down as many infected trees as possible
with the remaining funds. This approach minimizes the number of
new infections for any sth scenario. Also, a forest manager would be
indifferent about where to cut infected trees. This is simply because
we assume that the infection growth rate is uniform over the sites.
If growth rates varied over the landscape, the expected number of
healthy trees saved from infection would also vary according to
where tree removal occurs. Then, in the tree removal step, a forest
manager would prioritize sites with high growth rates.

4. Discussion

An effective strategy for limiting the spread of invasive forest
pathogens such as oak wilt is to find and remove diseased trees. The
detection step is important because diseased trees are often difficult
to identify and must be specifically identified before being removed.
The problem is further complicated by spatial heterogeneity of host
trees, infection levels, and costs across the landscape. There has
been scant attention paid to spatial optimization of surveillance and
control of invasive species. We present a static, spatial optimization
model of surveillance and control where the number of infected
trees is uncertain and the number of susceptible trees, the expected
number of infected trees, the infection growth rate, and the cost of
tree removal vary across sites. Our model is a mixed-integer, linear
program, inspired by the site selection literature, designed to choose
locations in a grid on which to focus surveillance and control in a set-
ting with budget-constraints and prior information on the expected
number of diseased trees. The model offers practical guidance to
managers in charge of deciding how and where to spend limited pub-
lic dollars when the goal is to reduce the spread of a forest disease.
Further, the model can be used to construct a curve that reflects the
cost of protecting healthy trees from infection. This curve provides
the manager with information about the level of budgets required
to achieve targeted percentages of healthy trees saved from infection.
The marginal cost of saving an additional healthy tree from the path-
ogen increases as the targeted protection level is set higher.

In our application to oak wilt management in Anoka County,
Minnesota, we find that the cost of protecting healthy trees is sub-
stantial. For example, assuming an annual infection growth rate of
8%, a $1 million budget for surveillance and control would save an
expected 185 trees from infection. This is, on average, $5400 per
tree. Changing the assumed growth rate from 0.08 to 0.12 has no ef-
fect on the optimal surveillance strategy (which cells to survey), the
surveillance cost, or the expected percentage of trees saved from in-
fection. It does have an effect on the expected number of trees
saved from infection, however. Because more trees are potentially
infected with a higher growth rate, removing the same number of
infected trees saves a higher number. For a $1 million budget, assum-
ing a growth rate of 12% increases the expected number of trees saved
to 277 for a lower average cost of $3610. These high costs from an an-
nual surveillance and removal program suggest that it may be prefer-
able to wait longer between surveillance and removal efforts to
reduce overall costs. On the other hand, as Fig. 3 shows, treating a
landscape with few infections leads to low costs of reducing the
expected percentage of trees saved, even when the average cost per
tree saved is very high. Determining the optimal timing of surveil-
lance and removal activities would require a dynamic model with
multiple periods, which is beyond the scope of our study.

We focus on the cost side of the ledger and thus hesitate to con-
clude whether a particular level of expenditure for surveillance and
control is justifiable from a benefit–cost point of view. Nevertheless,
results from hedonic property value studies on the value of urban
trees give perspective to our estimate of the average cost per tree
saved from infection. While most estimates of tree value are lower,
a recent study of street trees in Portland, Oregon found a value of
$8870 per tree (Donovan and Butry, 2010). Perhaps more relevant is a
study by Holmes et al. (2010) who examined the property-value im-
pacts of tree mortality caused by a non-native forest insect (hemlock
woolly adelgid). They found that when the cost to neighboring parcels
was considered, the cost was about three times as high as when the
cost to only a single parcel was estimated. This suggests that the eco-
nomic cost of an infectious tree can be much higher than just the cost
of losing a healthy tree. Expenditures to control oakwilt may be worth-
while if the goal is to preserve a healthy tree canopy.

The primary innovation of our model is its handling of uncertainty
in the extent of infestation. Uncertainty is managed by splitting the
decision of surveillance and control into two stages. In the first
stage, sites are selected for surveillance given their expected levels
of infestation. In the second stage, treatments are prescribed within
the surveyed sites contingent on the levels of infestation found. This
allows us to evaluate the effect of the level of uncertainty on optimal
strategies and estimate the value of gathering better prior informa-
tion. We find that forming more accurate estimates of the proportion
of infected trees through increased sampling reduces the cost of sur-
veillance and removal. However, the cost of increased sampling may
outweigh the benefits of reduced surveillance and removal costs at
low budget levels. Increased sampling takes place over the entire
landscape, and the benefit of additional precision in the estimated
amount of infection has only small effects on sites chosen. The opti-
mal sampling rate may be an additional outcome of a more complex
dynamic model.

We also explored potential rules of thumb that could be used in
the absence of an optimization model for applications like this one.
Two rules – choosing sites with high expected proportions of infected
trees and choosing sites with high expected numbers of infected
trees – performed well relative to the optimum. These rules would
tend to find cells with a high number of infected trees found per dol-
lar spent on surveillance. Choosing sites with high expected numbers
of healthy trees would not be a sound strategy, as this rule yields
fewer saved trees than random selection of sites. It is important to
recognize, however, that these rules of thumb were evaluated in a
setting where the growth rate was assumed constant across the land-
scape. Other general rules of thumb have been used in oak wilt man-
agement programs. In Texas, for example, sites with rapid oak wilt
expansion are given higher priority as are sites with high prospects
for treatment success (Davies, 1992). Our sense is that rules of
thumb may be an implicit part of forest management, and this
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research suggests that using rules of thumb that are evaluated explic-
itly with an optimization model may be a helpful way to conduct for-
est pest management.

From a computational perspective, the two-stage surveillance and
control model we develop is tractable: we solved problems with 90
sites and 2000 scenarios with commercial mixed integer program-
ming software in less than 4 h on a laptop computer. While solving
models with more sites will likely require additional execution time,
it is promising that rules of thumb can provide near-optimal solutions
to problems that exceed computer resource limits.

While our optimization model addresses a one-time investment in
surveillance and treatment, the performance of the rules-of-thumb for
selecting sites for surveillance can be tested over a longer time horizon
using a more detailed model of oak wilt establishment and spread. The
economic efficiency of these surveillance and treatment strategies
can then be compared with sanitation strategies that were developed
to slow the spread of Dutch elm disease in U.S. cities in the 1980s
(Baughman, 1985). It may also be possible to use a spatial-dynamic
optimization model based on partially observable Markov decision
processes to develop surveillance and control policies when there
are uncertainties in the incidence of infection, infection dynamics,
and detection (e.g., Chadès et al., 2011). The performance of these
policies can then be compared with rules-of-thumb for selecting
sites for surveillance and control obtained from static, spatial opti-
mization models.
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