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23.1 The issue 

Forests arc complex and dynamic ecosystems comprising 

individual trees that can vary in both size and species. 

In comparison to other organisms, trees arc relatively 

long lived (40-2000 years), quite plastic in terms of 

their morphology and ecological niche, and adapted to 

a wide variety of habitats, which can make predicting 

their behaviour exceedingly difficult. Forests arc widely 

managed for a variety of objectives including biodiversity, 

wildlife habitat, products, and recreation. Consequently, 

forest managers need tools that can aid them during the 

decision-making process. 
Both conceptual and quantitative models arc used in 

forest management. Conceptual models arc built from the 

extensive scientific literature that describes forest response 

to management (e.g. Moores ct a/., 2007). Often concep

tual models arc difficult to apply because each forest is 

unique due to its location and past management history. 

In addition, one major objective of sustainable forest 

management is the ability to compare multiple alter

native management activities. Thus, quantitative models 

are widely used because they can be used to update 

and project forest inventories, compare alternative man

agement regimes, estimate sustainable harvests, and test 

important hypotheses regarding forest growth and devel

opment (Vanclay, 1994). Quantitative models attempt 

to represent forests with mathematical equations that 

describe their behaviour over time. 

Various quantitative models are used in forest man

agement. These models differ in terms of their temporal 

resolution (daily versus annual versus decadal), spatial 

scale (stand versus individual tree) (see also Chapter 5), 

reliance on data (empirical versus mechanistic) (see 

also Chapter 7), representation of competitive processes 

(distance-independent versus distance-dependent) (see 

also Chapter 13), and degree of stochasticity (see also 

Chapter 8). These differences have important implications 
for how useful they arc for forest management planning 

process. Understanding these tradeoffs is important. 

Forest-management activities range from the selec

tive removal of certain individuals (thinning) to altering 

soil nutrient availability (fertilization). Ascertaining the 

long-term effects of these management activities is dif

ficult because of the dynamic nature of trees and high 

variability in the response of forests to management. 

In addition, new questions on the effective manage

ment of forests are emerging like the impacts of climate 

change, broader ecosystem-management objectives, and 

increased demands for forest-resource products. Thus, 

models will continue to be an important component of 

the forest-planning process. 
The objective of this chapter is to explore various mod

elling approaches used for forest management, provide 

a brief description of some example models, explore the 

ways that they have been used to aid the decision-making 

process, and make suggestions for future improvements. 

23.2 The approaches 

The modelling approaches used in forest management 

differ widely in their general frameworks as previously 
described. One of the most significant distinctions is 

the way that the models treat forest processes. Empirical 
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models describe the development of a forest based 
on regression equations parameterized from extensive 
datasets, while mechanistic models represent the key 
physiological processes such as light interception, 
photosynthesis, and respiration to predict growth. 
Hybrid models combine features of both empirical 
and mechanistic models to take advantage of strengths 
offered by each approach. Knowledge-based models usc 
rule-based systems and may not rely on data in the 
same way as the previous approaches. Each approach is 
described below. 

23.2.1 Empirical Models 

Empirical models depict trends obsavcd in measure
ment plots that arc established in forests. Consequently, 
empirical models arc usually only as good as the data 
used to develop them. To be effective for modelling pur
poses, the data must cover the extremes of the population 
they arc intended to represent, be extensive, and include 
measurements that likely describe the inherent variability 
of the observations. Due to regional differences, resolu
tion of datascts, and the statistical approaches used, a 
vast number of empirical models currently exist. Most 
empirical models operate on five- to ten-year time steps, 
but annualized models exist too (Weiskittel eta/., 2007). 
In addition, most empirical models rely on site index, 
average dominant height at a certain base age (gener
ally 50 years), as a measure of potential site productivity 
(Skovsgaard and Vanclay, 2008) . Therefore, the largest 
differences in empirical models arc their spatial resolution 
and treatment of competition. 

Most empirical models arc developed to operate at the 
stand level, which is a relatively uniform collection of 
trees that arc similar in size, composition, and location. 
Stands arc generally I to 50 ha in size and arc the basic 
spatial unit at which most management decisions are 
made. Based on their spatial resolution, three primary 
classes of empirical models exist: (i) whole stand; (ii) size 
class; and (iii) individual tree. 

23.2.1.1 Whole stand 

Whole-stand models describe the stand in terms of a few 
values like total volume, basal area, or the number of 
individuals per unit of area and predict the change in 
these attributes over time. Whole-stand models arc the 
simplest type of empirical model and have the longest 
history of development. One of the earliest examples 
of a whole-stand model in North America is the yield 
tables of Meyer (1929), which described growth in terms . ,. 

of stand age and site index. These yield tables were 
generalized into compatible growth yield equations that 
predicted changes in stand volume as a function of initial 
stand conditions and age (Buckman, 1962; Clutter, 1963; 
Moser, 1972). Some widely used whole-stand growth 
models arc DFSIM (Curtis ct a/., 1981), TAD AM (Garcia, 
2005a), and GNY (MacPhee and McGrath, 2006). 
Whole-stand models arc most appropriate for evenly 
aged stands of a single species. Although techniques have 
been developed to represent management activities with 
whole-stand models (Bailey and Ware, 1983; Picnaar 
ct a/., 1985 ), they arc not the most efficient approach, 
particularly when multiple thinnings arc intended to 
be represented. However, whole-stand models continue 
to be developed using modern statistical techniques 
(llarrio-Anta ct a/., 2006; Castcdo-Dorado ct a/., 2007) as 
they arc easy to usc, relatively robust, and can be more 
accurate in long-term predictions (Cao, 2006). 

23.2.1.2 Size class 

A forest is generally made up of trees of varying sizes, 
so a size-class model divides each stand into multiple 
groups of similar-sized individuals, which arc projected 
through time. Some of the most common size-class mod
els arc stand-table projections (e.g. Trincado ct a/., 2003), 
matrix-based (e.g. Picard ct a/., 2002), and diameter
distribution models (e.g. Qin ct a/., 2007). Stand-table 
projections and matrix-based approaches arc similar 
in that the frequencies of trees in each cohort arc 
projected through time by estimating the probability 
of moving from one group to another. A diameter
distribution approach uses statistical probability distri 
butions to describe the frequency of trees in different 
size classes and their changes through time. The Weibull 
probability distribution has been commonly used because 
it is flexible, relatively easy to integrate, and the param
eters can be determined in multiple ways (Cao, 2004) . 
Some examples of size-class models arc FIBER (Solomon 
eta/., 1995) and CAFOGROM (Alder, 1995), which arc 
both developed for mixed-species forests. However, most 
size-class models are again best suited for even-aged, 
single-species and unmanaged stands. 

23.2.1.3 Individual tree 

An individual-tree growth-and-yield model depicts the 
changes in each tree located in a particular forest. These 
models provide the highest resolution of predictions, but 
require the most data for both development and appli
cation. Since the individual tree is the focal point, these 



models arc effective for representing even-aged, single

species stands as well as stands that are mixed-species 

(Porte and Bartelink, 2002) and multi-cohort (Peng, 

2000). These models are also effective for representing 

the effects of management, particularly of complex thin

ning regimes. They have multiple components including 

diameter growth, height growth and mortality equations 

(see below). 
One key distinction of empirical individual-tree models 

is whether they are distance dependent or distance inde

pendent. Distance-dependent models require the location 

of each tree included in the simulation to be known, 

whereas distance-independent models assume the trees 

arc randomly distributed in the forest. Using tree location, 

distance-dependent models estimate competition indices 

such as size-distance (Opie, 1968), area potentially avail

able (Nance ct al., 1988), and exposed crown surface area 

(Hatch eta/., 1975). Distance-independent models rep

resent competition using variables such as basal area in 

larger trees (Wykoff, 1990), crown closure in higher trees 

(Hann ct nl., 2003), and relative tree diameter (Glover and 

Hool, 1979). Most comparisons between the effectiveness 

of distance-dependent and distance-independent mea

sures of competition for predicting growth have found 

distance-independent to be just as effective (Biging and 

Dobbertin, 1995; Wimberly and Bare, 1996; Corral Rivas 

ct nl., 2005). This result suggests that knowledge of tree 

location is not worth the effort or expense of collecting 

that information, but emerging remote-sensing technolo

gies may make it much easier to acquire this spatial 

information in the future. 
Some key examples of distance-dependent, individual

tree models arc SILVA (Prctzsch ct n/., 2002) and TASS 

(Mitchell, 1975), while FVS (Crookston and Dixon, 

2005) and PROGNAUS (Monscrud ct nl., 1997) arc some 

widely used distance-independent, individual-tree mod

els. Individual-tree models have been widely modified to 

account for the effects of forest management activities 

like fertilization and thinning (Hann ct nl., 2003). Since 

the individual tree is the focus, the implementation of 

complex thinning regimes is relatively straightforward 

(Soderbergh and Lcdcrmann, 2003). 

23.2.2 Mechanistic Models 

Empirical models generally cannot be extrapolated to 

new situations that were not covered in the data used to 

develop them. Empirical models also commonly rely on 

site index, which is the dominant height at a specified 

reference age, to represent the potential productivity of 
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a site. However, site index has several known problems 

(Skovsgaard and Vanclay, 2008). Finally, most empirical 

models view climate as static. In contrast, mechanis

tic models represent tree processes physiologically to 

avoid these limitations. Although mechanistic models 

have a long history of development, they have been used 

primarily for research rather than forest-management 

purposes (Makela et al., 2000), because they often require 

extensive parameterization, rely on information not com

monly available in forest inventories, and the output is 

often expressed in terms of little interest to forest man

agers, such as gross or net primary production (NPP). 

Regardless, several mechanistic models such as CABALA 

(Battaglia eta/., 2004), BIOME-BGC (Petritsch et al., 

2007) and CcnW (Kirshbaum, 2000) have been developed 

to understand better the effects of forest management. 

Most mechanistic models represent physiological pro

cesses at the whole-stand level because it simplifies 

the calculations and there is a better understanding at 

this scale (Landsberg, 2003b). Thus, differences between 

mechanistic models arc in their temporal resolution, level 

of detail in physiological processes, and the represen

tation of belowground processes. A monthly temporal 

resolution is commonly used because this type of climate 

information is widely available from wcbsites like PRISM 

(20 II) and some physiological processes scale better at 

this resolution. The limitation is that daily variation is 

not represented despite the fact that it can drive many 

physiological relationships. 
Previous reviews have explored differences in various 

approaches in representing physiological processes such 

as light interception (Wang, 2003), photosynthesis 

(Mcdlyn ct a/., 2003), respiration (Gifford, 2003), and 

carbon allocation (Lacointc, 2000). The representation 

of these processes has varied from highly simplistic to 

very complex. A general standard in most process-based 

models used for forest management is to use the 

Beer-Lambert law to estimate light interception, the 

Farquhar et al. (1980) equation for photosynthesis, and 

assume functional balance and allometric relations for 

carbon allocation (Le Raux ct nl., 2001) (see also Chapter 

12). For below-ground processes, some models treat 

the soil as a single layer and ignore most nutrient cycles 

(e.g. Running and Gower, 1991), while others rely on 

very detailed models of soil processes (e.g. Kirschbaum 

and Paul, 2002). Regardless of their temporal resolution 

or level of detail, most mechanistic models are highly 

sensitive to leaf-area index (LAI) because it drives the 

within- and below-canopy microclimate, determines and 

I 
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controls canopy water interception, radiation extinction, 
transpiration, and carbon gas exchange (Breda, 2003). 

Even today, basic physiological parameters arc unavail

able for several tree species, which can make using a 
mechanistic model challenging. An interesting alterna

tive to parameterizing each individual equation used in 
a process-based model from the literature or with new 
data is the usc of a Bayesian optimization technique. This 
technique has been demonstrated several times and often 
with promising results (Van Oijen ct nl., 2005; Svensson 
ct a/., 2008; Deckmyn ct a/., 2009). In this approach, 

Markov chain Monte-Carlo simulation is used to vary 
the model parameters and calibrate model predictions to 
observed data. The further application of this technique 
and increased availability of climate data should help 
increase the usc of mechanistic models for representing 
forest management, particularly under climate change 
(Schwalm and Ek, 200 I). When properly parameterized, 

mechanistic models can be just as effective or even better 
than empirical models in short-term simulations (Michie 
ct a/., 2009). However, mechanistic models can struggle 

with long-term projections because of the difficulty in 
representing mortality accurately (Hawkes, 2000). 

23.2.3 Hybrid Models 

Hybrid models combine features of both empirical and 

mechanistic approaches. This approach relics on the 
robustness of empirical models, while increasing their 
ability to extrapolate and avoid limitations with site index. 
Hybrid models have been suggested as the most effective 

means for representing the effects of forest management 
because they provide output of interest to forest man
agers and avoid the heavy data requirements of most 
mechanistic models (Landsberg, 2003a). Several hybrid 

models have been developed for single-species, even-aged 
stands like CrollAS (Miikclii, 1997), DF.HGS (Wciskittel 
ct a/., 2010), and SECRETS (Sampson ct a/., 2006). One 
widely used hybrid model is 3-PG (Landsberg and War
ing, 1997), which has been parameterized for a variety of 
forest types (Landsberg ct a/., 2003 ). 

Three primary classes ofhybrid model frameworks cur
rently exist, namely: (i) empirical growth equations with a 
physiologically derived covariate; (ii) empirical equations 
with a physiologically derived external modifier; and 
(iii) allometric models. The degree ofhybridization within 
each of these classes varies greatly, so an exact classifica

tion of a hybrid model is difficult. For example, Milner 
ct a/. (2003) linked the Forest Vegetation Simulator (FVS) 

• r 

and STAND-BGC such that both models ran simultane
ously in parallel and a user selected the degree of coupling. 
An example of an empirical growth equation with a phys
iologically derived covariate is given in Baldwin ct a/. 
(200 I), who related site index to NPP from a process
based model and allowed it to vary during a simulation. 
Henning and Burk (2004) provide an example of an 
empirical equation with a physiologically derived external 
modifier and found it improved projections. Allometric 
hybrid models rely on simplified representations of physi
ological processes and empirical equations that relate tree 
size to biomass. CrollAS and 3-PG arc two examples of 
allometric hybrid models. Both models usc the concept 
of light-usc efficiency to relate light interception to gross 
primary production (Gl'l'), which avoids the complica
tions of a detailed canopy-photosynthesis equation. In 
addition, 3-PG avoids estimating respiration by assuming 
NPP is one-half of GPP, which has been supported by 
some empirical studies (Waring ct a/., 1998). Allometric 
equations arc used to convert typical forest inventory data 
into biomass and to estimate carbon allocation. However, 
using a mean tree approach like 3-PG to accomplish this 
can result in a significant bias as the diameter distribution 
becomes more varied (Duursma and Rubinson, 2003 ). 

Relative to purely empirical models, the degree of 
improvement achieved with a hybrid model has varied. 
At the stand level, hybrid models have been quite effective 
at improving predictions (Battaliga ct a/., 1999; Snowdon, 
2001; Dzicrzon and Mason, 2006), whereas less modest 
gains have been achieved at the individual tree level 
(Henning and Burk, 2004; Wciskittcl eta/., 2010). The 
range of the reported improvements can vary widely at 
both the stand and tree levels because of the breadth 
of conditions covered by evaluation data, the length 
of the simulations, and differences in the adequacy of 
the empirical model. Interestingly, Henning and Burk 
(2004) found climate-dependent growth indices almost 
as effective as the process-based ones, while Snowdon 
eta/. (1998) found just the opposite. Regardless, the usc 
of hybrid models will likely continue to increase in the 
future as the understanding of physiological processes 
improves and the complexity of questions facing forest 
managers broaden. 

23.2.4 Knowledge-based Models 

Knowledge-based or rule-based systems arc a special case 
of modelling in which the components being modelled 
and the interactions between them arc not necessarily 
represented mathematically. Approaches such as these 



usc a symbolic representation of information to model 
systems by effectively simulating the logical processes of 
human experts (Reynolds ct a/., 1999). Knowledge-based 
systems have the advantages that they do not necessarily 
require the specific, detailed data that many simulation 
models do, and they can be adapted to situations in 
which some information may be lacking entirely. As 
such, they can be very useful in providing assistance 
to decision makers who must analyse situations and 
choose actions without complete knowledge. Schmoldt 
and Rauscher (1996) point out that knowledge-based 
systems also prove useful as agents to codify institutional 
memory, manage the coJlcction and delivery of scientific 
knowledge, and train managers through their ability to 
provide explanations of their reasoning processes (sec also 
Chapter 18). AJI these characteristics make knowledge
based models extremely useful in forest management. 
One example of a knowledge-based system that has been 
developed is the NorthEast Decision model (NED) (Twcry 
ct a/., 2005). This is a series of interconnected models 
including several growth-nnd-yicld models that aJlow 
users to easily address n variety of management objectives 
and compare n range of alternatives. 

23.3 Components of empirical models 

Empirical models arc widely used by forest managers. 
In particular, individual-tree-based empirical models nrc 
becoming the new standard as they arc flexible and 
the most effective approach for representing a range of 
stand structures, cspcciaJly uneven-aged (Pcng, 2000) 
and mixed-species stands (Porte and Bartelink, 2002). 
Consequently, it is important for forest managers to 
understand the components of empirical models and the 
limitations associated with each one. 

23.3.1 Allometric equations 

AJlomctric equations arc a key component of several 
hybrid models but in empirical models they arc often 
used to fiJI in missing values, predict hnrd-to-mcasurc 
attributes like volume and, in some cases, estimate growth. 
AJlometric equations can tnkc many forms depending on 
their intended usc. In empirical models, the primary 
aJlometric equations arc for total tree height, height to 
crown base, crown width, stem form, and biomnss. 

The use of aJlometric equations to predict total tree 
height is quite common and they have taken multiple 
forms (see Huang ct a/., 1992). Although total tree height 
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is strongly correlated with tree diameter at breast height 
(DBH), this relationship varies by species and stand con
ditions so additional covariates are commonly included. 
Tree DBH accounts for the majority of the variation in 
tree height, even across a large range of stand conditions. 
Hnnus ct a/. (1999) found DBH to explain between 36% 
and 83% of the original variation for several conifer and 
hardwood species in south-western Oregon. In general, 
hardwood heights tend to be harder to predict because of 
the lack of a true lender and the difficulty of measuring it 
nccurately. Constructing a well-behaved tree-height aJlo
metric cquntion requires selecting an appropriate model 
form and an extensive dataset that covers a range of stnnd 
conditions. Some researchers have found thnt includ
ing national and stntc champion trees in their dataset 
significantly improves the equation's predictive power. 

Tree growth is strongly linked to crown size, which is 
often expressed as crown ratio (CR) or the ratio of crown 
length to totnl tree height. Consequently, crown vnri
ablcs arc commonly included in several equntions used 
in growth-nnd-yicld models. However, crown measure
ments nrc significnntly less common than observations 
of total tree height. Although CR has been more com
monly modcJled (Belcher ct a/., 1982; Wykoff eta/., 1982; 
Hynyncn, 1995; Hasenauer and Monserud, 1996; Soares 
and Tome, 2001 ), Hann and Hanus (2004) found that 
height-to-crown-base (HCB) equations produced more 
precise predictions of crown recession when compared to 
CR equations. A properly formulated CR model should 
be constrained to give predictions between 0 and I, 

while an HCB equation should give predictions thnt 
do not exceed the total tree height. Consequently, the 
most common model form used to model CR nnd/or 
HCB has been the logistic form because it cnn be con
strained to nsymptote at 1 or total tree height (Ritchie 
nnd Hann, 1987; Hasenauer and Monserud, 1996; Hanus 
ct a/., 2000; Temesgen et al., 2005; Ducey, 2009). Unlike 
nJlomctric height equations where tree-size vnriablcs prc
dominnte, tree size and measures of competition arc of 
equal importance in CR/HCB equations (Hnscnnucr nnd 
Monserud, 1996; Temesgen ct al., 2005). Crown rntio nnd 
HCB are generally much harder to predict than total 
tree height, particularly for hardwood species (Hasenauer 
and Monserud, 1996). Consequently, significant biases in 
predicting CR or HCB can be incurred, which can have 
important implications for long-term growth projections 
(Leites eta/., 2009). 

Several key variables used in growth-nnd-yicld models 
rely on estimates of crown width. For example, the crown
competition factor of Krajicek ct al. ( 1961) requires an 
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estimate of maximum crown width (MCW) for all trees in 
a stand. Like defining the live crown base of an individual 
tree, multiple definitions of crown width exist. Maximum 
crown width generally refers to the width reached by an 
open-grown tree, while largest crown width (LCW) is 
the width of a stand-grown tree. Crown profile is the 
change in crown width within an individual tree. Maxi
mum (Ek, 1974; Paine and I-I ann, 1982; Hasenauer, 1997) 
and largest (Mocur, 1981; Hann, 1997; Bechtold, 2003) 
crown-width equations exist for several species. Gener
ally, DBH is effective at capturing most of the variation in 
both MCW (Paine and Hann, 1982) and LCW (Gill ct al., 
2000). Two primary approaches have been used to model 
crown profile: (i) direct and (ii) indirect characterization. 

Direct characterization uses deterministic or stochastic 
models to predict crown width (radius or area) from tree 
attributes, whereas indirect characterization predicts the 
attributes of individual branches and computes crown 
width hast:d on trigonometric relationships. Tht: dirt:ct 
charactt:rization has bt:cn the predominant form of prt:
dicting crown profile (Nepal et al., 1996; Baldwin and 
Pt:tcrson, 1997; Biging and Gill, 1997; Harm, 1999; Mar
shall ct al., 2003 ), but the indirect approach has also ht:t:n 
used for st:vt:ral spccit:s ( Cluzeau eta/., 1994; Ddcuzc 
ct a/., 1996; Rot:h and Maguire, 1997). 

Stt:m form and volume arc the two most important trt:c 
attributes for determining valut: and the primary interest 
of most growth-model users. A variety of approaches 
for determining both attributt:s exist, even for a single 
geographic region (t:.g. Hann, 1994). The current trend 
has bt:cn to move away from stem-volume equations 
and rely more on stem-taper t:quations, which predict 
changes in stem diameter from tree tip to base. Taper 
equations have become prcft:rrt:d bt:causc they depict 
stem form, provide predictions of total volume, and 
can be used to dctcrmint: mt:rchantablt: volume to any 
height or diameter specification. Limitations of taper 
equations arc that they arc often overly complex, which 
may limit their ability to extrapolate beyond the dataset 
from which they were developed, and they arc not opti
mized to give volume predictions. Similar to volume 
equations, most stem-taper equations arc a function of 
only OBI-I and total tree !wight, and a variety of model 
forms exist. Taper equations art: of three primary types, 
namely: (i) single (Thomas and Parresol, 1991 ); (ii) seg
mented (Max and Burkhart, 1976); and (iii) variable-form 
(Kozak, 1988). Goodwin (2009) gives a list of criteria for 
an ideal taper equation, but most of the widely used 
forms do not meet all the criteria, which is important to 
recognize. 

Like stem volume, thousands of biomass equations 
have been developed around the world. For example, 

jenkins ct al. (2004) reported 2640 biomass equations 
from 177 studies in North America. Other extensive 
reviews have been done for Europe (Zianis et al., 2005), 
North America (Ter-Mikaelian and Korzukhin, 1997), 

and Australia (Eamus ct al., 2000; Keith ct al., 2000) , 
which highlight the vast amount of work that has been 
done on this topic. However, most biomass equations 
arc simplistic with parameters determined from relatively 
small sample sizes. Zinnis ct al. (2005) found that more 
than two-thirds of the equations they examined were a 
function of just Dl3H and more than 75% of the stud
ies that reported a sample size had less than 50 trees. 
As a result of using simple model forms fitted to small 
data sets, the application of the resulting equations to 

other populations can produce large predictions errors 
(e.g. Wang ct al., 2002). In addition, the development 

of universal (Pilli ct a/., 2006) and generalized (Muukko
ncn, 2007) allometric cquntions ignores significant species 

variability and complex relntionships, particularly when 
tlu: goal is to estimate regional and national biomass 
(Zianis and Mancuccini, 2004). Efforts to localize allo
metric biomass equations without requiring destructive 
sampling by accounting for the relationship between tree 
height and DB I-I as well as wood density (Kcttcrings ct al., 
200 I) or the DBH distribution (Zianis, 2008) have been 
proposed. The most widely used biomass equations in 
North America arc reported in jenkins ct al. (2003 ). 

23.3.2 Increment equations 

Growth is the increase in dimensions of each individual 

in a forest stand through time, while increment is tht: 
rate of the change in a specified period of time. Although 
growth occurs throughout a tree, foresters art: primarily 

concerned with changes in both tree DBH and height 
because of their ease of measurement and strong corre
lation with total tree volume. Tree growth has multiple 
inter- and intra-annual stages that must be considt:rcd by 
tree-list models. For example, a cumulative growth curve 
of height over age shows three primary stages: (i) juvenile 
period where growth is rapid and often exponential; (ii) a 

long period of maturation wht:rt: the trend is nearly linear; 
and (iii) old age where growth is nearly asymptomatic. A 
diameter growth curve would show much the same trend, 

except there is a tendency toward curvilinearity during the 
period of maturity. Various theoretical model forms have 
been used to predict growth in forestry (Zeide, 1993 ), but 
most of them can be generalized with a single equation 



form (Garcia, 2005b). The most common model forms 
include the Gompertz (1825), Bertalanffy (1949), and 
Richards (1959) equations. Although these theoretical 
models offer some biological interpretability (e.g. Zeide, 
2004), it has been shown that well formulated empirical 
equations can be just as accurate or even more accurate 
for a wide range of data (e.g. Martin and Ek, 1984). 

The dependent variables for updating individual 
tree DBH have included diameter increment (Hann 
ct a/., 2006; Weiskittel ct a/., 2007), diameter-inside
bark-squared (Cole and Stage, 1972), relative-diameter 
increment (Yue eta/., 2008), and inside-bark-basal-area 
increment (Monserud and Sterba, 1996). The optimal 
dependent variable has been debated, as West ( 1980) 
found no difference between using diameter or basal 
area to predict short-term increment (I to 6 years) in 
Eucalyptlls. Two general conceptual approaches to model 
formulation have been used to predict diameter incre
ment: (i) a maximum potential increment multiplied 
by a modifier and (ii) a unified equation that predicts 
realized increment directly. Although the differences 
between the two arc mostly semantic as they both can 
give reasonable behaviour (Wykoff and Monserud, 
19!!8 ), they do illustrate a key philosophical decision 
in modelling increment. The potential-times-modifier 
approach to modelling diameter increment has long been 
used in the past, but suffers from the inability to estimate 
parameters simultaneously and estimating a potential 
increment change can be challenging. Consequently, 
empirical model forms that predict realized diameter 
increment have become more common and differ 
primarily in the covariatcs considered. The majority of 
equations include two expressions of DBH to induce 
a peaking behaviour (BAL), a measure of two-sided 
competition and site index. 

Modelling height increment is generally much more 
difficult than diameter increment because of higher 
within-stand variability, a more limited number of rcmca
surcmcnts, and a closer connection to environmental 
factors rather than stand-level ones. Like diameter incre
ment, a variety of approaches have been used to model 
height increment and the most common arc of two types: 
(i) potential times modifier and (ii) realized. One alterna
tive to a height increment equation is to predict diameter 
increment and usc a static allometric height to diame
ter equation to estimate the change in tree height. In 
contrast to diameter increment modelling, the potential
times-modifier approach is commonly used for predicting 
height increment (Hegyi, 1974; Arney, 1985; Burkhart 
eta/., 1987; Wensel eta/., 1987; Hann and Ritchie, 1988; 
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Hann and Hanus, 2002; Hann eta/., 2003; Weiskittel 
et al., 2007; Nunifu, 2009). One reason for this is that 

dominant height equations can be easily rearranged to 
give good estimates of potential height growth rather than 
having to fit a separate equation or select a subjective max
imum as was the case for potential diameter growth. The 
prediction of height increment with a realized approach 
has paralleled the approaches used for estimating diam
eter increment directly. For example, Hasenauer and 
Monscrud (1997) used a height-increment-model form 
similar to the diameter-increment equation ofMonscrud 
and Sterba (1996), except tree height-squared was used 
instead of DBH2• 

23.3.3 Mortality equations 

Tree mort;1lity is ;1 rare yet important event in forest 

stand development ;1nd has significant implications for 
long-term growth-;1nd-yield model projections (Gert
ner, 19!!9). Of all of the attributes predicted in growth 
models, mortality remains one of the most difficult due 
to its stoch;1stic nature and infrequent occurrence. For 
modelling purposes, it is important to note the type 
of mortality, which is generally described as regular or 
irregular. Regular mortality can also be expressed as 
density-dependent and is caused by competition-induced 
suppression. Irregular or catastrophic mortality is inde
pendent of stand density and is due to external factors 
such as disease, fire, or wind. Previous reviews on mod

elling mortality have concluded that there is no best 
way to model it for ;1ll applications (Hawkes, 2000). 
Nearly ;1ll of the tree-level mortality equations use logis
tic regression to estimate the probability of a tree dying 
(Hamilton, 1986; Monscrud ;1nd Sterba, 1999; Hann 
ct a/., 2003). Thus, the primary differences between indi

vidual tree-mortality equations that have been developed 
are: (i) the type of data used; (ii) the statistical meth
ods for estim;1ting parameters; (iii) the length of the 
prediction period; (iv) us;1gc of additional equations to 

constrain predictions; and (v) the tree and stand vari;1bles 
utilized for predictions. Like allometric and increment 
equations, DBH has been the primary variable in most 
individual tree-mortality equations. DBH growth has also 
been used as a covariate in mortality equations (Mon
serud, 1976; Buchman ct a/., 1983; Hamilton, 1986; Yao 
eta/., 2001 ). Although data intensive and often cxpl;Jin
ing a limited amount of variation, empirical equations 
of mortality tend to perform better than theoretical 
(Bigler and Bugmann, 2004) and mechanistic ;1pproaches 
(Hawkes, 2000). 
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23.3.4 Ingrowth and regeneration 

Models of forest regeneration that provide reasonable 
estimates of tree species composition and density after a 
disturbance have been difficult to develop. Gap-dynamics 
models in the JABOWA family tend to usc an approach 
of generating many small individuals in a predetermined 
proportion based on their prevalence in the seed bank or 
in the overstorcy before disturbance and letting them die 
in early steps of the simulation (Botkin, 1993). Empirical 
stand models typically have no regeneration function or 
a crude one that applies ingrowth to the smaller size 
classes based on proportions of a previous stand (e.g. 
Solomon ct a/., 199S). Miina ct a/. (2006) provide an 
overview of the techniques used to empirically predict 
ingrowth and regeneration. One effective alternative to 
empirical equations is to usc imputation techniques based 
on extensive regional databases (Ek c/ a/., 1997). 

DcvelopnH.:nts using knowledge-based models to pre
dict composition of undcrstorey after a minor disturbance 
or a newly regenerated stand after a major disturbance 
show some promise. Yaussy eta/. (1996) describe their 
efforts to catalogue ecological characteristics of various 
species of the central hardwood forest of the United 
States and the individual-tree regeneration model devel
oped from those characteristics. Ribbens eta/. ( 1994) 
developed a spatially explicit, data-intensive regeneration 
model, Recruits, which calculates the production and 
spatial dispersion of recruited seedlings in reference to 
the adults and uses maximum likelihood analysis to cal
ibrate functions of recruitment. However, this program 
requires mapped data of adults and transect sampling of 
seedlings, so it is unlikely to be useful in management 
applications. A knowledge-based model of oak regenera
tion developed by Loftis and others (Rauscher ct al. 1997) 
docs show promise using expert knowledge of ecological 
characteristics of tree species in the Appalachian region 
to predict composition of a new cohort I 0 years after a 
major disturbance (lloucugnani, 200S). 

23.4 Implementation and use 

Growth models arc widely used for a variety of purposes. 
In using a growth model, important considerations need 
to be made to ensure proper behaviour. Some of the most 
important considerations arc validation and calibration 
(see also Chapter 2), visualization, and integration with 
other software systems (sec also Chapter 27). Each of 
these aspects is discussed further below. 

23.4.1 Validation and calibration 

To be useful, a model needs to depict regional trends 
accurately. If a model is inaccurate, inappropriate man

agement recommendations may be made or resource 
availability under or overestimated. This importance of 
proper validation and calibration is well illustrated in 
Maine. For example, Randolph ct a/. (2002) suggested 

that commercial thinning be delayed 10 to IS years after 
a spruce-fir stand reaches a dominant height of ISm 
and there were relatively few benefits of precommcrcial 
thinning based on simulations made by the north-eastern 
variant of the FVS growth-and-yield model. However, 

Saunders ct a/. (2008) found that FVS vastly undcrprc
dictcd the growth of thinned stands, while ovcrprcdicting 
the growth of unthinned stands. Consequently, Saunders 

eta/. (2008) recommended that precommcrcial thinning 
is beneficial on most spruce-fir sites and commercial thin
ning is best applied when the dominant height reaches 
12m based on simulations made by a rccalibrated version 
ofFVERSUS. 

Proper validation and calibration is often not done 
because it is time-consuming and requires users to 
have long-term data available. Validation is also diffi
cult because selecting the proper statistical test is not 
straightforward and various results can be obtained when 
different tests arc used (Yang eta/., 2004). One technique 
that has worked well for model validation is the equiv
alence test of Robinson and Froese (2004) . Froese and 
Robinson (2007) demonstrated the usc of this technique 
for validating an individual-tree, basal-area-increment 
model. The method requires the researcher to select 

indifference thresholds for both the intercept and slope of 
the equivalence test. Rather than use a particular statisti
cal test to validate a model, Yang ct a/. (2004) suggest that 
statistical tests should be combined with other validation 

techniques, particularly how well a model fits new and 
independent data. 

Commonly, after a validation exercise, model calibra
tion is attempted to improve predictions. Calibration can 
range from relatively simple single-equation modifiers 
that adjust predictions to more closely match observa
tions to entire recalibration of the full model. An effective 
methodology for entire recalibration of the full model 
uses a Bayesian optimization framework and has been 

well demonstrated for calibrating complex mechanistic 
models (Gertner ct a/., 1999; Van Oijen ct a/., 200S; Dcck
myn ct a/., 2009). The current wide usc of mixed-effects 
models has made local calibration of equations relatively 
easy. The usc of this technique has been demonstrated 



for calibrating total height (e.g. Temesgen et nl., 2008) 
and stem taper (Trincado and Burkhart, 2006) but can 
be extended to any equation when it is estimated with 
a mixed-effects approach. Regardless of how it is done, 
validation and calibration arc important steps to ensuring 
model predictions are reliable. 

23.4.2 Visualization 

Many people tend to respond to visual images, leading to 
the adage, 'a picture is worth a thousand words.' Much 
information generated by forest models is in the form of 
data tables, which arc intelligible to the well initiated, but 
meaningless to many, including public stakeholders and 
many forest managers. Photographs of a forest may be 
nearly as good at conveying an image of the conditions 
as actually visiting a site, but models arc used to project 
conditions that do not yet exist. The best that is available 
to provide an image of potential future conditions is a 
computer representation of the data. One such system, 
the Stand Visualization System (SVS) (McGaughey, 1997) 
generates graphic images depicting stand conditions rep
resented by a Jist of individual stand components, for 
example trees, shrubs, and down material (SVS, 20 II). It 
is in wide usc as a secondary tool, connected to growth 
models such as FVS (20 II), Lnndscape Management 
System (LMS; McCarter ct a/., 1999) and NED (Twcry 
ct a/., 2005 ). Besides SVS, several other stnnd-kvcl visu
alization tools exist, such as TREEVIEW (Pretzsch ct a/., 
2008), Sylview (Scott, 2006), nnd the Visible Forest (2011; 
Hnnus and Hann, 1997). 

At the lnndscapc level, there arc several tools avail
able for visualization. These tools arc pnrticulnrly useful 
for maintnining or protecting views, visualizing the lnnd
scapc under nltcrnativc management regimes, and harvest 
scheduling. The Environmental Visualizntion tool (ENVI
SION, 2011) is a very powerful and rcnlistic landscape
level visualization tool. ENVISION uses nn algorithm 
thnt allows simulntcd scenes to be matched with rcnl 
photographs taken from known locations. UTOOLS nnd 
UVIEW nrc gcogrnphic annlysis nnd visunlizntion soft
ware for watershed-level plnnning (Agnr nnd McGnughey, 
1997). The system uses a datnbase to store spntinl infor
mation and displnys lnndscape conditions of n forested 
watershed in a flexible frnmework (UTOOLS, 2011) . 
Another similar visualizntion tool is SmartForest (Orland, 
1995), which is also an interactive program to display 
forest data for the purposes of visualizing the effects of 
various alternative treatments before actually implement
ing them. The tool has been developed to be compatible 
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with most modern PCs (SmartForest, 2011; Uusitalo 
and Kivincn, 2000). Two additional landscape visualiza
tion tools are L-VIS (Pretzsch etnl., 2008) nnd SILVISO 
(2011 ). Like ENVISION, these are very highly detailed 
visunlizntion tools but are unique in that they nrc tightly 
coupled with a forest-simulation model (Pretzsch eta/., 
2008). 

Rcgnrdlcss of the scale, Pretzsch ct a/. (2008) identified 
four tenets thnt nil visualization tools should embody, 
namely: (i) they should cover temporal and spatinl 
scales thnt arc suited to human perception cnpnbili
tics; (ii) they should be data-driven; (iii) they should 
be ns rcnlistic ns possible; and (iv) they should allow free 
choice of perspective. Most of the described visualization 
tools address these tenets, but in different ways. Future 
efforts arc focused on providing more realistic real-time 
visual izntions. 

23.4.3 Integration with other software 

23.4.3.1 Habitat models 

Providing wildlife habitat has long been one of the objec
tives of forest management. Often the availability of 
habitnt has been assumed if the forest is managed to max
imize timber. Controversies such ns those over spotted 
owl and salmon habitat in the Pncific Northwest hnve 
shown that sometimes forest-management practices need 
to he altered to meet multiple objectives, and sometimes 
objectives other than timber arc of overriding impor
tance. Habitat-suitability models hnve been a common 
technique for formulnting descriptions of the conditions 
needed to provide habitnt for individual species. These 
models arc typically generated from expert knowledge and 
expressed in terms of rnnges and thresholds of suitability 
for severn! importnnt hnbitnt charncteristics. Models thnt 
usc such techniques lend themselves to adaptation to the 
usc of fuzzy logic inn knowlcdgc-bnsed computer system. 

Recent developments using gcnernl habitat informn
tion in n geographic information system coupled with 
other techniques hnvc produced a number of promis
ing approaches to intcgrnting timber and wildlife habitnt 
modelling in n spntinlly explicit context. Hof and Joyce 
(1992, 1993) were some of the first to describe the usc 
of mixed linear nnd integer programming techniques to 
optimize wildlife habitat and timber in the context of 
the Rocky Mountain region of the western United Stntes. 
Ortigosa ct a/. (2000) present a softwnre tool called VVF, 
which accomplishes an integration of habitnt suitability 
models into a GIS to evaluate territories as hnbitat for 
particular species. Simons (2009) demonstrated a rather 
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large-scale application of a growth model, habitat suitabil
ity model, and a GIS platform to understand the influence 
of forest management on American marten, Canada lynx, 
and snowshoe hares. 

23.4.3.2 Harvest-scheduling models 

Broad-scale analyses arc necessary for policy decisions 
and for including ecosystem processes with an area greater 
than a stand. Spatially explicit techniques arc important 
and valuable because patterns and arrangements affect 
the interactions of components. 

Forest managers need to plan activities across a 
landscape in part to maintain a reasonable allocation 
of their resources, but also to include considerations 
of maintenance of wildlife habitat and to minimize 
negative effects on the aesthetic senses of people who 
sec the management activities. One of the most widely 
used harvest scheduling models is Remsoft's WOOD
STOCK software system (www.rcmsoft.com/forcstry 
Softwarc.php). Gustafson ( 1999} presented a model, 
HAitVEST (www.nrs.fs.fed.us/tools/harvcstl}, to mahh: 
analysis of such activities across a landscape. The model 
has now been combined with LANDIS (Miadcnoff eta/., 
1996) to integrate analyses of timber harvesting, forest 
succession, and landscape patterns (Gustafson eta/., 
2000; Radcloff eta/., 2006}. LANDIS has recently been 
updated to LANDIS-II (www.landis-ii.org/; Scheller 
eta/., 2007} and been widely used throughout North 
America and beyond (Miadcnoff, 2004; Swanson, 2009). 
I-I of and Bevers ( 199H} take a mathematical optimization 
approach to a similar prohh:m, to maximize or minimize 
a management objective using spatial optimization given 
constraints of limited area, finite resources, and spatial 
relationships in an ecosystem. 

23.4.3.3 Recreation-opportunity models 

Providing recreation opportunities is an important part 
of forest management, especially on public lands. Indeed, 
the total value generated from recreation on National 
Forests in the United States competes with that from tim
ber sales, and may well surpass it soon. Forest managers 
have long used the concept of a 'recreation opportunity 
spectrum' (Driver and Brown, 197H) to describe the range 
of recreation activities that might be feasible in a particular 
area, with the intention of characterizing the experience 
and evaluating the compatibility of recreation with other 
activities and goals in a particular forest or other property. 

RBSim (2011; Gimblctt eta/., 1996) is a computer pro
gram that simulates the behaviour ofhuman recrcationists 

0,. 

in high use natural environments using GIS to represent 
the environment and autonomous human agents to simu
late human behaviour within geographic space. In RBSim, 
combinations of hikers, mountain bikers, and Jeep tours 
arc assigned individual characteristics and set loose to 
roam mountain roads and trails. The behaviours and 
interactions of the various agents arc compiled and anal
ysed to provide managers with evaluations of the likely 
success of an assortment of management options. 

23.4.3.4 Decision-support systems 

Adaptive management has recently been viewed as 
a very promising and intuitively useful conceptual 
strategic framework for defining ecosystem management 
(ltauschcr, 1999}. Adaptive management is a continuing 
cycle of four activities: planning, implementation, 
monitoring, and evaluation (Walters and Holling, 1990; 
Bormann eta/., 1993 ). Planning is the process of deciding 
what to do. Implementation is deciding how to do it and 
then doing it. Monitoring and evaluation incorporate 
analysing whether the state of the managed system was 
moved closa to the desired goal state or not. After each 
cycle, the results of evaluation arc provided to the plan
ning activity to produce adaptive h:arning. Unfortunately, 
this genaal theory of decision analysis is not specific 
enough to he operational. Further, different decision
making environments typically require different, opera
tionally specific decision processes. Decision-support sys
tems arc combinations of tools designed to facilitate oper
ation of the decision process (Oliver and Twcry, 1999). 

Mowrer eta/. ( 1997} surveyed 24 of the leading 
ecosystem-management decision-support systems (EM
DSS) developed in the government, academic, and private 
sectors in the United States. Their report identified five 
general trends: (i) while at least one EM-DSS fulftlled 
each criterion in the questionnaire used, no single system 
successfully addressed all important considerations; 
(ii) ecological and management interactions across 
multiple scales were not comprehensively addressed by 
any of the systems evaluated; (iii) the ability of the current 
generation EM-DSS to address social and economic 
issues lags far behind biophysical issues; (iv) the ability 
to simultaneously consider social, economic, and bio
physical issues is entirely missing from current systems; 
(v) group consensus-building support was missing from 
all but one system- a system which was highly dependent 
upon trained facilitation personnel (Mowrer eta/., 1997). 
In addition, systems that did offer explicit support for 
choosing among alternatives provided decision-makers 
with only one choice methodology. 



There arc few full-service DSSs for ecosystem manage

ment (Table 23.1). At each operational scale, competing 

full-service EM-DSSs implement very different decision 

processes because the decision-making environment they 

arc meant to serve is very different. At each operational 

scale, competing full-service EM-DSSs implement very 

different decision processes because the decision-making 

environment they are meant to serve is very different. For 

example, at the management unit level, EM-DSSs can be 

separated into those that usc a goal-driven approach and 

those that use a data-driven npproach to the decision sup

port problem. The NED (http://nrs.fs.fed.us/tools/ned/; 

Twery eta/., 2000) is nn example of a gonl-drivcn EM-DSS 

where gonls nrc selected by the uscr(s). In fnct, NED is 

the only goal-driven, full-service EM-DSS opcrnting at 

the management unit level. These gonls define the desired 
future conditions, which define the future state of the for

est. Management actions should be chosen that move the 
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current state of the forest closer to the desired future con

ditions. Recently, NED was expnnded to NED-2 (Twery 

eta/., 2005 ). In contrast, INFORMS (Williams eta/., 1995) 

is a data-driven system that begins with a list of actions and 

searches the existing conditions to find possible locations 
to implement those management nctions. 

Group decision-making tools are a special cntegory 

of decision support, designed to facilitate negotiation 

nnd further progress toward a decision in a situation in 

which there arc multiple stakeholders with varied per
spectives nnd opinions of both the preferred outcomes 

and the means to proceed. Schmoldt and Peterson (2000) 

describe a methodology using the analytic hierarchy pro

cess (Saaty, 1980) to facilitate group decision mnking in 

the context of a fire disturbnnce workshop, in which the 
objective was to plan and prioritize research activities. 

Faber ct a/. ( 1997) developed nn 'active response GIS' that 

uses networked computers to display proposed options 

Table 23.1 A representative sample of existing ecosystem-management dccision-suppmt software for forest 

conditions of the United States arranged by operational scale and function. 

Full service EM-DSS 

Operational scale 

Regional 
Assessments 

Forest-level 
planning 

Management-unit 
level planning 

Models 

EMDS 
LUCAS' 

RELM 
SPECTRUM 
WOODSTOCK 
ARCFOREST 
SARA 
TERRA VISION 
EZ-IMPACT' 
DECISION PLUS' 
DEFINITE' 

NED 
INFORMS 
MAGIS 
KLEMS 
TEAMS 
LMS* 

Functional service modules 

Function 

Group negotiations 

Vegetation dynamics 

Disturbance 
simulations 

Spatial visualization 

Interoperable system 
architecture 

Economic impact 
analysis 

Activity scheduling 

Models 

AR/GIS 
!IllS' 

FVS 
LANDIS 
CRBSUM 
SIMPI'I.LE 

FIREBGC 
GYPSES 
UP EST 

UTOOLS/UVJEW 
svs· 
SMARTFOREST' 

LOKI 
CORBA* 

IMPLAN 

SNAP 

'References for models not described in Mowrer eta/. (1997): EZ-IMPACT (fiehan, 1994); DECISION PLUS (Sygcncx, 
1994); IBIS (Hashim, 1990); DEFINITE (Janssen and van Hcrvijnen, 1992); SMARTFOREST (Orland, 1995); CORDA 
(Otte ct a/., 1996); SVS (McGaughey, 1997); LMS (Oliver and McCarter, 1996); LUCAS (Berry ct a/., 1996). 
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and as intermediaries to facilitate idea generation and 
negotiation of alternative solutions for management on 
US National Forests. 

23.5 Example model 

23.5.1 Forest-vegetation simulator (FVS) 

The FVS grew out of the original PROGNAUS model of 
Stage (1973) and is now available throughout the entire 
US (FVS, 2011; Crookston and Dixon, 2005). Currently, 
then: over 20 different FVS variants and each is calibnlted 
to a specific geographic area of the US. The basic l;VS 
model structure has been used to develop growth models 
in British Columbia (Tcmcsgen and LeMay, 1999) and 
Austria (Monserud ct a/., 1997). All FVS variants arc 
empirical distance-independent, individual-tree growth
and-yield models, but differ in the equation forms used 
due to differences in regional data availability. The model 
uses a temporal step of 5 to 10 years and can be used for 
simulations that last for several hundred years. To predict 
growth accurately, the FVS uses separate equations for 
large(> 127nun DBH) and small trees ( < 127mm DBI-1). 
The diameter growth of large trees is driven by current 
tree DBH, whereas growth of small trees is primarily a 
function of their current height. Mortality is sensitive to 
variant- and species-dependent estimates of maximum 
stand density index (SDI). The model can simulate the 
influence of a variety of forest management activities such 
as harvesting, site preparation, thinning, and fertilization. 
The model can handle planted regeneration, but some 
variants do predict the amount of natural regeneration 
(Robinson and Monscrud, 2003). The model will self
calibrate if tree-height or growth-measurement data are 
available. 

Several extensions to FVS exist (sec Crookston and 
Dixon, 2005). The extensions can rcpres~.:nt the influence 
various disturbance ag~.:nts such as western sp rue~.: bud
worm and mountain pin~.: b~.:etle. On~.: of th~.: wid~.:st used 
~.:xt~.:nsion is th~.: Fir~.: and Fuds Extension (R~.:inhardt and 
Crookston, 2003), which is used to ~.:stimat~.: tre~.:-levcl 

biomass and the influence of fi re on growth and mor
tality. Recently, a climate-sensitive variant of FVS was 
developed to address the expected influence of climate 
change on tree growth and mortality (Moscow Forestry 
Sciences Laboratory, 2011; Crookston ct a/., 2010). The 
FVS interface is a Microsoft Windows-based program 
that allows for batch runs and file-based inputs. The 
model has been linked with external programs like SVS 
and LMS, and continues to be developed as new variants 

. ' 

for south-western Alaska and the Acadian Region are 
currently being constructed. 

23.5.2 Tree GrOSS and BWinPro 

Forest-growth modelling in Europe also continues to 
progress along parallel tracks. One well-used modelling 
framework is TrecGrOSS, an open-source software 
framework for devdoping forest-growth models (Tree
GrOSS, 2011). One instance of the framework is the 
silvicultural decision support system BWINPro (Nagel 
and Schmidt, 2006). Additional models and uses arc 
described in Hasenauer (2006). 

23.6 Lessons and implications 

23.6.1 Models can be useful 

Models of various kinds have been very useful to forest 
manag~.:ment for a long time. The most basic models 
provide at least an estimate of how much timb~.:r is avail
abl~.: and what it may be worth on the market, so that 

managers can det~.:rmine economic feasibility of timb~.:r 
cutting. More sophisticated modelling techniques provid~.: 
b~.:ttcr estimat~.:s of timb~.:r, include other forest charac

teristics, and project likely developm~.:nts into the futur~.:. 

Reliability of empirical models tends to be r~.:stricted to th~.: 
curr~.:nt g~.:neration of tr~.:es, for which th~.:y arc very good. 

Other for~.:st-growth modds us~.: ~.:cological and 
physiological principks to make projections of growth. 
Theoretical, mechanistically based models tend to be 
better for general pictures of forest characteristics in 
a more distant future projection, but may b~.: k ss 
reliable for near-term forecasts. They tend to require 
more data than managers are capable of collecting for 
extensive tracts, and thus are often restricted to usc in 
scientific research contexts, rather than management 

decisions directly. Still, such research-orientated models 
are still very useful in the long term, as they hdp 
increase understanding of the syst~.:m and direct further 
investigations. Hybrid models have attempted to bridg~.: 
the gap between mechanistic and empirical models. 

With greater and greater computing power in recent 
years, modelling techniques have cxpand~.:d to includ~.: 
spatially explicit models oflandscapc-l~.:vel change. These 
models now help provide the context in which a stand
level forest -management decision is made, giving a man
ager a better understanding of the implications one action 
has on other areas. Positive dfects ar~.: being seen in wildlife 



management, fire management, watershed management, 
land-usc changes and recreation opportunities. 

Other improvements in computing power and collab
oration between forestry and landscape architecture have 
resulted in greatly enhanced capabilities to display poten
tial conditions under alternative management scenarios 
before they are implemented. This capability enhances 
the quality of planning and management decisions by 
allowing more of the stakeholders and decision makers 
to understand the implications of choosing one option 
over another. As computing power increases and dig
ital renderings improve, care must be taken to ensure 
that viewers of the renderings do not equate the pictures 
they sec with absolute certainty that such conditions will 
occur. We arc st ill subject to considerable uncertainty in 
the forest system itself and there is considerable danger 
that people will believe whatever they see on a computer 
screen simply because the computer produced it. 

23.6.2 Goals matter 

Forestry practice in general and silviculture in particular 
arc based on the premise that any activity in the forest 
is intended to meet the goals of the landowner. Indeed, 
identification of the landowner's objectives is the first step 
taught to silviculturists in forestry schools (Smith ct a/., 
1997). However, there has always been societal pressure 
for management practices, even on private lands, to recog
nize that actions on any particular private tract influence 
and arc influenced by conditions on surrounding lands, 
including nearby communities and society at large. This 
pressure implies that decision makers need to be cognizant 
of the social components and context of their actions. 
Forest-management models that intend to help landown
ers or managers determine appropriate actions must focus 
on meeting the goals defined by the user if they arc to 
be used. Models that predetermine goals or constrain 
options too severely arc unlikely to be useful to managers. 

23.6.3 People need to understand tradeoffs 

There are substantial and well developed theory and 
methodological tools of the social sciences to increase our 
understanding of the human element of forest ecosystem 
management (Cortner and Moote, 1999; Parker eta/., 
1999). Models of human behaviour, social organizations 
and institutional function need to be applied to for
est planning, policy, and management. Existing laws, 
tax incentives, and best management practices provide 
some context for delivering social goods, benefits, and 
services from forest management (Cortner and Moote, 
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1999). In addition, forest initiatives such as sustainable 
forestry certification through the forest industry's Sus
tainable Forestry Initiative (SFI) and the independent 
Forest Stewardship Council's (FSC) 'Green Certifica
tion' programmes include explicit, albeit modest, social 
considerations. (Vogt et al., 1999). Unfortunately, these 
sideboards to forest management fail to deal with the com
plexity of forest-ecosystem management. Indeed, new 
modelling approaches are needed to effectively identify, 
collect, and relate the social context and components of 
forest-ecosystem management in order to enhance and 
guide management decisions (Villa and Costanza, 2000) . 
One oftoday's greatest challenges is the development and 
testing of new theories and tools that describe the multiple 
ramifications of management decisions and that provide 
a practical, understandable decision process. Develop
ing, evaluating, and adapting new decision processes and 
their supporting software tools is a critically important 
endeavour. 
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