U. S. FOREST SERVICE RESEARCH NOTE NE-80
 1968

N

FOREST SERVICE. U. S. DEPT. OF AGRICULTURE, 6816 MARKET STREET, UPPER DARBY. PA. B

A COMPUTER PROGRAM FOR MAKING S-CONTRASTS INVOLVING LINEAR COMBINATIONS OF GROUP MEANS

Abstract. A description of a FORTRAN IV computer program that is used for making Scheffe's S-contrasts in one-way analyses.

Forestry research often involves experiments in which many treatments are tested. If the overall test of treatment equality results in a significant difference, it is usually necessary to make further tests involving linear combinations of the treatment responses. When many a posteriori comparisons are necessary and treatments have unequal sample sizes, the researcher often resorts to Scheffe's S-contrasts and finds himself involved in lengthy calculations.
Scheffé ${ }^{1}$ describes the method of making contrasts for a one-way analI
ysis. In short, the method results in the contrast $\Sigma c_{i} \beta_{i}$ with a confidence 1
interval:

$$
\begin{aligned}
& \sum_{1}^{\mathrm{I}} \mathrm{c}_{\mathrm{i}} \beta_{\mathrm{i}} \pm(\mathrm{I}-\mathrm{I})\left(\mathrm{F}_{\alpha ;}{ }_{\mathrm{I}-1, \mathrm{~N}-\mathrm{I}}\right)(\mathrm{s}) \sqrt{\sum_{1}^{\mathrm{I}}\left(\mathrm{c}_{\mathrm{i}}^{2} / \mathrm{J}_{\mathrm{i}}\right)} .
\end{aligned}
$$

Where:
I
$c_{i}=a$ contrast multiplier for group i, and $\quad \Sigma c_{i}=0$.
$\beta_{1}=$ arithmetic mean of group i.

[^0]I $=$ number of groups.
$\mathrm{F}=$ Fisher's F-value for I-1 and N-I degrees of freedom at the chosen (α) level of significance.
$\mathrm{N}=$ total sample size (all groups combined).
$\mathrm{s}^{2}=$ the error mean square.
$\mathrm{J}_{1}=$ sample size for group i.
By the same method, we may calculate an F -value for an individual contrast as:

$$
\mathrm{F}_{\mathrm{I}-1, \mathrm{~N}-\mathrm{I}}=\frac{\left(\begin{array}{ll}
\mathrm{I} & \\
\Sigma & c_{1} \beta_{\mathrm{i}} \\
\mathrm{I}
\end{array}\right)^{2}}{\left.(\mathrm{I}-1) \mathrm{s}^{2}\left(\begin{array}{ll}
\mathrm{I} \\
\mathrm{\Sigma} & \mathrm{c}_{\mathrm{i}}^{2} \\
\mathrm{I}
\end{array}\right) \mathrm{J}\right)}
$$

and we may check the F -value against a tabulated F at level of significance α.
The FORTRAN IV computer program described here is simply an automated method of making one-way analysis S -contrasts for linear combinations of group means with constant or varying sample sizes.

Description of Control Deck

The user must supply the following control deck as data to be operated on by the program:

Card No.
1

2-I
(1 for each group)

Card
Columns
1-4 Number of treatments or groups, right adjusted.
5-8 Degrees of freedom for error, right adjusted.
9-17 Error mean square, punched with decimal point.
18-22 MEANS punched if individual treatment means are to be compared; blank otherwise.
1-10 Label for group.
11-13 Sample size, right adjusted
14-20 Group total, punched with decimal point.
21 Minus sign (-) if multiplier (c) for contrast is negative.

22-25 Multiplier (c) for contrast, punched with decimal point.
26-70 Repetition of format for columns 21-25 for each additional contrast to be made.

The program is limited to:
(1) A maximum of 10 contrasts (in addition to the contrasts of individual means).
(2) A maximum of 1,000 groups.

Example

If we assume that we have tested the effects of eight fertilizers on height growth of red pine seedlings and that the treatments are represented by unequal sample sizes, then the analysis might be:

Source	$d f$.	SS	M.S.	F.
Fertilizer	7	94.0678	13.438	14.0
Error	$\underline{134}$	$\underline{128.7060}$	0.960	
Total	141	222.7738		

The treatment totals and their sample sizes are:

Total

Treatment	J_{i}	(growth in beight)
1	18	36.7
2	19	12.1
3	17	11.8
4	15	42.1
5	19	38.9
6	20	60.3
7	20	40.2
8	14	30.1

TREAT. 18 36.7 .25 . 25
TREAT. $219 \quad 12.1 \quad .5-.5$
TREAT. $317 \quad 11.8 \quad .5-.5$
TREAT. 4 15 42.1-.5 $\quad 15$
TREAT. $5 \quad 19 \quad 38.9 \quad .25 \quad .25$
TREAT. 60 60.3-.5 $\quad 20$. 5
TREAT. 7 20 40.2 . 25 . 25
TREAT. $8 \quad 14$ 30.1 . 25 . 25

Figure 1.-Control deck.

```
S CONTRASTS INVOLVING LINEAR COMBINATIONS DF ARITHMETIC MEANS -
EACH CONTRAST HAVING 7 and 134 DEGREES DF FREEDOM
\begin{tabular}{|c|c|}
\hline TREAT. 1 & VS. TREAT. \(3, F=0.2353 \mathrm{El}\) \\
\hline treat. 1 & VS. TREAT. \(4, F=0.7177 \mathrm{E} 00\) \\
\hline treat. 1 & VS. TREAT. \(5, F=0.9890 \mathrm{E}-04\) \\
\hline TREAT. 1 & VS. TREAT. \(6, F=0.1343 \mathrm{E} 01\) \\
\hline treat. 1 & VS. TREAT. 7 , \(F=0.1177 \mathrm{E}-02\) \\
\hline TREAT. 1 & VS. TREAT. 8 , \(F=0.1447 \mathrm{E}-01\) \\
\hline TREAT. 2 & VS. TREAT. \(3, F=0.4380 \mathrm{E}-02\) \\
\hline TREAT. 2 & VS. TREAT. \(4, F=0.5873 \mathrm{E} 01\) \\
\hline treat. 2 & VS. TREAT. 5 , \(F=0.2813 \mathrm{E} 01\) \\
\hline TREAT. 2 & VS. TREAT. \(\mathcal{E}\), \(F=0.8200 \mathrm{El}\) \\
\hline TREAT. 2 & VS. TREAT. \(7, F=0.2734 \mathrm{E}\) O1 \\
\hline treat. 2 & VS. TREAT. \(8, F=0.2746 \mathrm{Ol}\) \\
\hline TREAT. 3 & VS. TREAT. 4 , \(F=0.5292 \mathrm{E} 01\) \\
\hline TREAT. 3 & VS. TREAT. 5 , \(F=0.2445 \mathrm{E} 01\) \\
\hline treat. 3 & VS. TREAT. \(6, F=0.7366 \mathrm{E} 01\) \\
\hline TREAT. 3 & VS. TREAT. 7 , \(F=0.2368 \mathrm{E} 01\) \\
\hline TREAT. 3 & VS. TREAT. \(8, F=0.2422 \mathrm{E} 01\) \\
\hline TREAT. 4 & VS. TREAT. \(5, F=0.7192 \mathrm{E} 00\) \\
\hline TREAT. 4 & VS. TREAT. \(6, F=0.5536 \mathrm{E}-01\) \\
\hline TREAT. 4 & VS. TREAT. \(7, F=0.8095 E 00\) \\
\hline TREAT. 4 & VS. TREAT. 8 , \(F=0.4647 \mathrm{E} 00\) \\
\hline TREAT. 5 & VS. TREAT. \(6, F=0.1358 \mathrm{El}\) \\
\hline TREAT. 5 & VS. TREAT. \(7, F=0.2025 E-02\) \\
\hline TREAT. 5 & VS. TREAT. 8 , \(F=0.1263 \mathrm{E}-01\) \\
\hline TREAT. 6 & VS. TREAT. \(7, F=0.1503 E 01\) \\
\hline TREAT. 6 & VS. TREAT. 8 , \(F=0.9169 \mathrm{E} 00\) \\
\hline TREAT. 7 & VS. TREAT. \(8, F=0.2402 E-01\) \\
\hline 0.5000 E 00 & \(x\) TREAT. 2 \\
\hline \(0.5000 E\)
\(-0.5000 E\)
-0.500 & \(\begin{array}{ll}x & \text { TREAT: } \\ X & 3 \\ X & \text { TREAT. }\end{array}\) \\
\hline -0.5000E 00 & \[
\begin{aligned}
\mathrm{X} \text { TREAT. } 6 \\
\mathrm{~F}=0.1316 \mathrm{E} 02
\end{aligned}
\] \\
\hline
\end{tabular}
```

```
0.2500E 00 X Treat. I
```

0.2500E 00 X Treat. I
-0.5000E 00 X TREAT. 2
-0.5000E 00 X TREAT. 2
-0.5000E 00 x TREAT. 3
-0.5000E 00 x TREAT. 3
0.2500E 00 X TREAT. 5
0.2500E 00 X TREAT. 5
0.2500E 00 X TREAT. 7
0.2500E 00 X TREAT. 7
0.2500E 00 X TREAT. 8
0.2500E 00 X TREAT. 8
F=0.6871E 01
F=0.6871E 01
0.2500E 00 x YREAT. 1
0.2500E 00 x YREAT. 1
-0.5000E 00 X TREAT. 4
-0.5000E 00 X TREAT. 4
0.2500E 00 X TREAT. 5
0.2500E 00 X TREAT. 5
-0.5000E 00 X TREAT. 6
-0.5000E 00 X TREAT. 6
0.2500E 00 X TREAT. 7
0.2500E 00 X TREAT. 7
0.2500E 00 X TREAT. \&
0.2500E 00 X TREAT. \&
F=0.2466E 01

```
                                    F=0.2466E 01
```

Figure 2.-Program output.

```
$IBFTC STEST
    CIMENSION LABEL(1000,3),XJ(1000),TOT(1000),C(1000,10)
    READ{5.1)IGRPS,IDF,SOUARE,MEAN,S
    1 FORMAT(2I4,F9.0,A4,A1)
    DATA MEA.SN/4HMEAN,1HS/
    XGRPS=IGRPS
    CF=IDF
    IGRPDF=IGRPS-1
    DO 2 I=1,IGRPS
    READ(5,3)(LABEL(I,J),J=1,3),XJ(1),TOT(1),(C(1,J),J=1,10)
    FORMAT (2A4,A2,F3.0.F7.0,10F5.0)
    WRITE(6,4)IGRPDF,IDF
    FORMATI85HIS CONTRASTS INVOLVING LINEAR COMBINATIONS OF ARITHMETIC
    1 \text { MEANS - EACH CONTRAST HAVINGI5,4H ANDI5,2OH DEGREES OF FREEDOM ?}
        IFIMEA.NE.MEAN.OR.SN.NE.SIGO TO }
        CO 5 I=1,IGRPDF
        IZ=I+1
        CO 5 K=IL,IGRPS
    DIFF=TOT(I)/XJ(I)-TOT(K)/XJ(K)
    SUM=1./XJ(I)+1./XJ(K)
    F={DIFF**2)/((XGRPS-1.)*SQUARE*SUM)
    WRITE(6,6)(LABEL(I,J),J=1,3),(LABEL(K,J),J=1,3),F
    FORMAT(2HO 2A4,A2,5H VS. 2A4,A2,4H,F=E11.4)
    CO 13 J=1,10
    WRITE(6.8)
    FORMAT(1H)
    CO 9 I=1,IGRPS
    IF(C(I,J).NE.0.0IGO TO 10
    CONTINUE
    GO TO 15
    CIFF=0.
    SUM=0.
    CO 12 I=1.IGRPS
    CIFF=DIFF+CII,J)*(TOT(I)/XJ(I))
    IF(C(I,J).NE.O.)WRITE(6,11)C(I,J),(LABEL(I,K),K=1,3)
    FORMAT(1H E11.4,3H X 2A4,A2)
    SUM=SUM+(C(I,J)**2)/XJ(I)
    F=(DIFF**2)/((XGRPS-1.)*SQUARE*SUM)
    WRITE(6,14)F
    FORMAT(1H 21X,2HF=E11.4)
    STOP
    END
```

Figure 3.-Program listing.

Now, suppose that we want to make contrasts of:
(1) individual treatment response means.
(2) average of responses to treatments 2 and 3 versus average of 4 and 5.
(3) average of responses to treatments $1,5,7$, and 8 versus average of 2 and 3.
(4) average of responses to treatments $1,5,7$, and 8 versus average of 4 and 6 .

Then the control deck for this job would be that shown in figure 1. The results are shown in figure 2. If we check the calculated F -values ${ }^{2}$ against tabulated $\mathrm{F}_{(.0557,134}=2.08$, we find the following contrasts to be significant:
(1) Treatments 2 and 3, taken separately, versus each of the remaining treatment means ($1,4-8$).
(2) Contrasts (2), (3), and (4), as stated above.

Figure 3 contains a program listing.
—WARREN E. FRAYER ${ }^{3}$
Assistant Professor of Forest Mensuration
Colorado State University
Fort Collins, Colorado

[^1]
[^0]: ${ }^{1}$ Scheffé, Henry. THE ANALYSIS OF VARIANCE. John Wiley, N. Y. 477 pp. 1959.

[^1]: ${ }^{2}$ Note that the floating-point multipliers and F-values contain a decimal value, and, after the E , the number of places to the left (-) or right that the decimal point must be moved.
 ${ }^{3}$ When this paper was prepared, Dr. Frayer was a research forester with the Northeastern Forest Experiment Station, Forest Service, U. S. Department of Agriculture, Upper Darby, Pa.

